Artificial Intelligence (AI)
AI 501, RESEARCH, 1-16 Credits
This course is repeatable for 99 credits.
AI 503, THESIS, 1-16 Credits
This course is repeatable for 99 credits.
AI 505, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 99 credits.
AI 506, PROJECTS, 1-16 Credits
This course is repeatable for 99 credits.
AI 507, SEMINAR, 1-16 Credits
This course is repeatable for 99 credits.
AI 510, OCCUPATIONAL INTERNSHIP, 1-4 Credits
This course is repeatable for 99 credits.
AI 530, BIG IDEAS IN AI, 3 Credits
Introduces the major ideas and subtopics in the field of Artificial Intelligence (AI) including philosophical foundations, heuristic search, optimization, knowledge representation, reasoning under uncertainty, machine learning, computer vision, natural language processing, sequential decision making, and social and ethical issues. Covers the historical context as well as recent advances.
Recommended: Programming ability in a high-level language (such as C++ or Python)
Available via Ecampus
AI 531, ARTIFICIAL INTELLIGENCE, 4 Credits
Intelligent agents. Problem-solving as heuristic search. Adversarial search. Constraint satisfaction methods; Arc-consistency. Knowledge representation and reasoning. Propositional logic. Reasoning with propositional logic: algorithms for satisfiability. First-order logic. Proof theory, model theory, resolution refutation, forward and backward chaining, representing events and actions.
Equivalent to: CS 531
Available via Ecampus
AI 533, INTELLIGENT AGENTS AND DECISION MAKING, 4 Credits
Representations of agents, execution architectures. Planning: non-linear planning, graphplan, SATplan. Scheduling and resource management. Probabilistic agents. Dynamic belief networks. Dynamic programming (value iteration and policy iteration). Reinforcement learning: Prioritized sweeping, Q learning, value function approximation and SARSA (lamda), policy gradient methods.
Equivalent to: CS 533
Recommended: CS 531 or AI 531
AI 534, MACHINE LEARNING, 4 Credits
Continuous representations. Bias-variance tradeoff. Computational learning theory. Gaussian probabilistic models. Linear discriminants. Support vector machines. Neural networks. Ensemble methods. Feature extraction and dimensionality reduction methods. Factor analysis. Principle component analysis. Independent component analysis. Cost-sensitive learning.
Equivalent to: CS 534
Available via Ecampus
AI 535, DEEP LEARNING, 4 Credits
An introduction to the concepts and algorithms in deep learning; basic feedforward neural networks, convolutional neural networks, recurrent neural networks including long short-term memory models, deep belief nets, autoencoders and deep networks applications in computer vision, natural language processing and reinforcement learning.
Prerequisite: CS 534 with C or better or AI 534 with C or better or ROB 537 with C or better
Equivalent to: CS 535
AI 536, PROBABILISTIC GRAPHICAL MODELS, 4 Credits
Representation of probabilistic graphical models, both directed (Bayesian networks) and undirected (Markov networks). Exact and approximate inference techniques. Parameter and structure learning from data.
Equivalent to: CS 536
Recommended: Strong programming skills
AI 537, COMPUTER VISION I, 3 Credits
An introduction to low-level computer vision and visual geometry. Topics of interest include the following: detection of interest points and edges, matching points and edges, color models, projective geometry, camera calibration, epipolar geometry, homography, image stitching, and multitarget tracking.
Equivalent to: CS 537
Recommended: Undergraduate-level statistics, probability, calculus, linear algebra, good programming skills, machine learning or AI
AI 539, SELECTED TOPICS IN ARTIFICIAL INTELLIGENCE, 0-5 Credits
This course is repeatable for 99 credits.
AI 586, APPLIED MATRIX ANALYSIS, 4 Credits
Focuses on the why and how advanced matrix analysis tools can solve signal processing (SP) and machine learning (ML) problems. Covers both the fundamental concepts of advanced linear algebra and their applications in the broad areas of signal processing and machine learning. Offers an in-depth close look at a series of core tasks in SP and ML that are enabled by analytical and computational tools in matrix analysis. Introduces frontier research in nonnegative matrix factorization and tensor analysis.
Equivalent to: ECE 586
Recommended: MTH 341
AI 601, RESEARCH, 1-16 Credits
This course is repeatable for 99 credits.
AI 603, THESIS, 1-16 Credits
This course is repeatable for 99 credits.
AI 605, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 99 credits.
AI 607, SEMINAR, 1-16 Credits
This course is repeatable for 99 credits.
AI 637, COMPUTER VISION II, 4 Credits
An introduction to recent advances in visual recognition, including object detection, semantic segmentation, multimodal parsing of images and text, image captioning, face recognition, and human activity recognition. Covers common formulations of these problems, including energy minimization on graphical models, and supervised machine learning approaches to low- and high-level recognition tasks.
Prerequisite: CS 535 with B+ or better or AI 535 with B+ or better or CS 537 with B- or better or AI 537 with B- or better
Equivalent to: CS 637
Recommended: CS 519