PLANT BREEDING & GENETICS (PBG)

PBG 199, SPECIAL TOPICS, 1-16 Credits
Equivalent to: PBG 199H
This course is repeatable for 16 credits.

PBG 199H, SPECIAL TOPICS, 1-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: PBG 199
This course is repeatable for 16 credits.

PBG 299, SPECIAL TOPICS, 1-16 Credits
Equivalent to: PBG 299H
This course is repeatable for 16 credits.

PBG 299H, SPECIAL TOPICS, 1-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: PBG 299
This course is repeatable for 16 credits.

PBG 399, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

PBG 401, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

PBG 403, THESIS, 1-16 Credits
Graded P/N.
This course is repeatable for 99 credits.

PBG 405, READING AND CONFERENCE, 1-16 Credits
Equivalent to: PBG 405H
This course is repeatable for 16 credits.

PBG 407, SEMINAR, 1-16 Credits
This course is repeatable for 16 credits.

PBG 409, TEACHING PRACTICUM, 1-16 Credits
Graded P/N.
This course is repeatable for 16 credits.

PBG 410, INTERNSHIP, 1-12 Credits
Offered via Ecampus only.
This course is repeatable for 12 credits.

PBG 430, PLANT GENETICS, 3 Credits
Introduction to the principles of plant genetics with an emphasis on the structure and function of economically important plant genomes.
Equivalent to: HORT 430
Recommended: One year of biology and chemistry.
Available via Ecampus

PBG 431, PLANT GENETICS RECITATION, 1 Credit
Review and demonstration of plant genetics principles.
Equivalent to: CSS 431, HORT 431

PBG 441, PLANT TISSUE CULTURE, 4 Credits
Principles, methods, and applications of plant tissue culture. Laboratory is important part of course. Topics include callus culture, regeneration, somaclonal variation, micropropagation, anther culture, somatic hybridization, and transformation. CROSSTLISTED as PBG 441 and MCB 541/PBG 541.
Equivalent to: HORT 441
Recommended: (BI 311 and BOT 331) or PBG 430 or CSS 430

PBG 450, PLANT BREEDING, 4 Credits
An introduction to the genetic improvement of self-pollinated, cross-pollinated, and asexually propagated species and the genetic principles on which breeding methods are based. Examples are drawn from a wide range of crops, including cereal grains, grasses, fruits, nuts, and vegetables; guest lecturers discuss their breeding programs. Additional topics include crop evaluation, germplasm preservation, disease resistance, and biotechnology. Lec/lab.
Prerequisite: PBG 430 with D- or better
Equivalent to: CSS 450, HORT 450
Recommended: BI 311 or PBG 430

PBG 499, SPECIAL TOPICS, 1-16 Credits
Equivalent to: PBG 499H
This course is repeatable for 16 credits.

PBG 499H, SPECIAL TOPICS, 1-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: PBG 499
This course is repeatable for 16 credits.

PBG 501, RESEARCH, 1-16 Credits
Graded P/N.
This course is repeatable for 16 credits.

PBG 503, THESIS, 1-16 Credits
Graded P/N.
This course is repeatable for 999 credits.

PBG 505, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

PBG 506, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.
PBG 507, SEMINAR, 1-16 Credits
Graded P/N.
This course is repeatable for 16 credits.

PBG 508, WORKSHOP, 1-16 Credits
This course is repeatable for 16 credits.

PBG 509, PRACTICUM IN TEACHING, 1-3 Credits
Developing skills and competence in teaching under staff supervision; organization and presentation of instructional material by assisting in laboratory, recitation, and lectures. CROSSTLISTED as CROP 509/ENT 509/PBG 509/SOIL 509.
Equivalent to: CROP 509, ENT 509, SOIL 509
This course is repeatable for 9 credits.

PBG 510, INTERNSHIP, 4 Credits
Offered via Ecampus only.
This course is repeatable for 12 credits.

PBG 513, PLANT GENETIC ENGINEERING, 3 Credits
Principles, methods, and recent developments in the genetic engineering of higher plants. Offered alternate years.
Equivalent to: HORT 513
Recommended: (BI 311 and BOT 331) or (CSS 430 or CSS 530) or (HORT 430 or HORT 530)

PBG 519, CURRENT TOPICS IN PLANT BREEDING AND GENETICS, 2 Credits
Provides an advanced understanding of plant breeding and genetics and their relationship to other disciplines through critical analysis of the scientific literature. Practice synthesizing information and presenting findings to peers. Instructors, topics, and specific learning objectives vary from term to term. CROSSTLISTED as HORT 519/PBG 519.
Equivalent to: HORT 519
This course is repeatable for 12 credits.

PBG 530, PLANT GENETICS, 3 Credits
Introduction to the principles of plant genetics with an emphasis on the structure and function of economically important plant genomes.
Equivalent to: HORT 530
Recommended: One year of biology and chemistry.

PBG 541, PLANT TISSUE CULTURE, 4 Credits
Principles, methods, and applications of plant tissue culture. Laboratory is important part of course. Topics include callus culture, regeneration, somaclonal variation, micropropagation, anther culture, somatic hybridization, and transformation. CROSSTLISTED as PBG 441 and MCB 541/PBG 541.
Equivalent to: HORT 541, MCB 541
Recommended: (BI 311 and BOT 331) or PBG 430

PBG 550, PLANT BREEDING, 4 Credits
An introduction to the genetic improvement of self-pollinated, cross-pollinated, and asexually propagated species and the genetic principles on which breeding methods are based. Example are drawn from a wide range of crops, including cereal grains, grasses, fruits, nuts, and vegetables; guest lecturers discuss their breeding programs. Additional topics include crop evaluation, germplasm preservation, disease resistance, and biotechnology. Lec/lab.
Equivalent to: CSS 550, HORT 550
Recommended: BI 311 or PBG 430 or PBG 530

PBG 551, BREEDING CLONAL CROPS, 1 Credit
The overall goal of the course is to gain fundamental knowledge of breeding methods for clonal crops; these methods are different from those used for seed-propagated crops. Specific examples from a wide array of plant species (tree fruits, berries, tree nuts, potato, sweet potato, cassava, cacao) will be provided to illustrate application of the fundamental knowledge.
Prerequisite: PBG 450 with C or better or PBG 550 with C or better

PBG 552, PLANT BREEDING AND SEED PRODUCTION IN ORGANIC SYSTEMS, 3 Credits
Genetic improvement and seed propagation of self-pollinated and cross-pollinated crops bred for and used in organic production. The philosophical basis for organic agriculture will be reviewed in the context of what breeding technologies are allowed and why. Important traits for adaptation to organic production will be described. Models for organic plant breeding and examples of such programs are provided.
Prerequisite: PBG 530 with D or better
Recommended: BI 311 or PBG 430

PBG 556, CROP PLANT DOMESTICATION, 2 Credits
Learning is based on discussion of the contemporary literature on crop plant origins and domestication. The major agronomic and horticultural crops will be covered. Topics include primary centers of domestication, traits altered by domestication, effect of genetic architecture and local ecology on domestication, and importance of genetic diversity to current plant improvement efforts.

PBG 557, PLANTS AND PATENTS, 2 Credits
Learn about different methods of intellectual property protection in agriculture with a focus on plant patents, plant variety protection and utility patents. The rights, current issues and restrictions that different types of patents allow will be presented through reading the current literature.

PBG 591, SELECTED TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

PBG 599, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

PBG 601, RESEARCH, 1-16 Credits
Graded P/N.
This course is repeatable for 16 credits.
PBG 603, DISSERTATION, 1-16 Credits
Graded P/N.
This course is repeatable for 999 credits.

PBG 605, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

PBG 607, SEMINAR, 1-16 Credits
This course is repeatable for 16 credits.

PBG 609, PRACTICUM IN TEACHING, 1-3 Credits
Developing skills and competence in teaching under staff supervision; organization and presentation of instructional material by assisting in laboratory, recitation, and lectures. Graded P/N.
Equivalent to: CROP 609, ENT 609, SOIL 609
This course is repeatable for 9 credits.

PBG 620, INTRODUCTION TO MOLECULAR MARKERS, 2 Credits
Principles and methods for molecular marker discovery and analysis. Offered even years. CROSSLISTED as MCB 620/PBG 620.
Equivalent to: MCB 620
Recommended: BI 311 or PBG 430 or PBG 530 or HORT 430 or HORT 530

PBG 621, GENETIC MAPPING AND ASSOCIATION, 2 Credits
Principles and methods for genetic map construction and genome-wide association studies. Offered even years. CROSSLISTED as MCB 621/PBG 621.
Equivalent to: MCB 621
Recommended: BI 311 or PBG 430 or PBG 530 or HORT 430 or HORT 530

PBG 622, MAPPING QUANTITATIVE TRAIT LOCI, 1 Credit
Principles and methods for mapping genes underlying phenotypically complex traits. Offered alternate years. CROSSLISTED as MCB 622/PBG 622.
Equivalent to: CSS 622, MCB 622
Recommended: CROP 590 or CSS 590 or ST 513

PBG 650, ADVANCED PLANT BREEDING AND QUANTITATIVE GENETICS, 3 Credits
Pedigree, bulk, single-seed-descent, doubled haploid, backcross, testcross, mass, and half-sib, S~1~, and S~2~ family breeding methods; breeding hybrids and selecting sources of alleles for developing superior hybrids; the nature and consequences of genotype by environment interactions; marker-assisted backcross and inbred line breeding; quantitative trait locus mapping; random linear models; designing and analyzing cultivar, line, and family selection experiments. Offered odd years.
Equivalent to: CSS 650
Recommended: (CSS 430 or CSS 530 or PBG 430 or PBG 530 or HORT 430 or HORT 530) and (CSS 450 or CSS 550 or PBG 450 or PBG 550 or HORT 450 or HORT 550) and (ST 411 or ST 511) and (ST 412 or ST 512) and (ST 413 or ST 513)

PBG 691, SELECTED TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

PBG 699, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.