MECHANICAL ENGINEERING (ME)

ME 206, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

ME 250, INTRODUCTION TO MANUFACTURING PROCESSES, 1 Credit
Use of measuring and layout tools, interpretation of blueprints and drawings, identification of engineering materials. Operation of machine tools, including calculation of machining parameters. Operation of gas and MIG welding equipment. Lec/lab. Graded P/N.
Prerequisite: ENGR 248 with C or better and (PH 211 [C] or PH 211H [C])

ME 299, SPECIAL TOPICS, 1-16 Credits
Graded P/N.
Equivalent to: ME 299H
This course is repeatable for 16 credits.

ME 299H, SPECIAL STUDIES, 1-16 Credits
Graded P/N.
Attributes: HNRS – Honors Course Designator
Equivalent to: ME 299
This course is repeatable for 16 credits.

ME 306, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

ME 311, INTRODUCTION TO THERMAL-FLUID SCIENCES, 4 Credits
Basic concepts of fluid mechanics, thermodynamics and heat transfer are introduced. Conservation of mass, energy, moment and the second law of thermodynamics are included. CROSSLISTED as ME 311/NSE 311.
Prerequisite: (ENGR 212 with C or better or ENGR 212H with C or better) and (MTH 256 [C] or MTH 256H [C])
Equivalent to: ENGR 311, ENGR 311H, ME 311H, NE 311H, NSE 311, NSE 311H

ME 311H, INTRODUCTION TO THERMAL-FLUID SCIENCES, 4 Credits
Basic concepts of fluid mechanics, thermodynamics and heat transfer are introduced. Conservation of mass, energy, moment and the second law of thermodynamics are included. CROSSLISTED as ME 311/NSE 311.
Attributes: HNRS – Honors Course Designator
Prerequisite: (ENGR 212 with C or better or ENGR 212H with C or better) and (MTH 256 [C] or MTH 256H [C])
Equivalent to: ENGR 311, ENGR 311H, ME 311H, NE 311H, NSE 311, NSE 311H

ME 312, THERMODYNAMICS, 4 Credits
Exergy destruction, machine and cycle processes, law of corresponding states, non-reactive gas mixtures, reactive mixtures, thermodynamics of compressible fluid flow. CROSSLISTED as ME 312/NSE 312.
Prerequisite: (MTH 256 with C or better or MTH 256H with C or better) and (ME 311 [C] or ME 311H [C] or NSE 311 [C] or NSE 311H [C] or NE 311 [C] or NE 311H [C])
Equivalent to: ENGR 312, ME 312H, NE 312, NE 312H, NSE 312, NSE 312H

ME 312H, THERMODYNAMICS, 4 Credits
Exergy destruction, machine and cycle processes, law of corresponding states, non-reactive gas mixtures, reactive mixtures, thermodynamics of compressible fluid flow. CROSSLISTED as ME 312/NSE 312.
Attributes: HNRS – Honors Course Designator
Prerequisite: (MTH 256 with C or better or MTH 256H with C or better) and (ME 311 [C] or ME 311H [C] or NSE 311 [C] or NSE 311H [C] or NE 311 [C] or NE 311H [C])
Equivalent to: ME 312, NE 312, NE 312H, NSE 312, NSE 312H

ME 316, MECHANICS OF MATERIALS, 3 Credits
Determination of stresses, deflections, and stability of deformable bodies with an introduction to finite element analysis.
Prerequisite: (ENGR 213 with C or better or ENGR 213H with C or better) and (MTH 256 [C] or MTH 256H [C])

ME 317, INTERMEDIATE DYNAMICS, 4 Credits
Continues the study of kinematics and kinetics of particles and rigid bodies, with applications to mechanical systems of current interest to engineers.
Prerequisite: (ENGR 212 with C or better or ENGR 212H with C or better) and (MTH 256 [C] or MTH 256H [C]) and (ENGR 112 [C] or CS 161 [C] or CBEE 102 [C] or NSE 115 [C])
Equivalent to: ME 317H

ME 317H, INTERMEDIATE DYNAMICS, 4 Credits
Continues the study of kinematics and kinetics of particles and rigid bodies, with applications to mechanical systems of current interest to engineers.
Attributes: HNRS – Honors Course Designator
Prerequisite: (ENGR 212 with C or better or ENGR 212H with C or better) and (MTH 256 [C] or MTH 256H [C]) and (ENGR 112 [C] or CS 161 [C] or CBEE 102 [C] or NSE 115 [C])
Equivalent to: ME 317

ME 331, INTRODUCTORY FLUID MECHANICS, 4 Credits
Introduces the concepts and applications of fluid mechanics and dimensional analysis with an emphasis on fluid behavior, internal and external flows, analysis of engineering applications of incompressible pipe systems, and external aerodynamics. CROSSLISTED as ME 331/NSE 331.
Prerequisite: ((MTH 254 with C or better or MTH 254H with C or better) and (MTH 256 [C] or MTH 256H [C]) and (ENGR 212 [C] or ENGR 212H [C]) and (ENGR 311 [C] or ME 311 [C] or ME 311H [C] or NSE 311 [C] or NSE 311H [C] or NE 311 [C] or NE 311H [C]))
Equivalent to: ENGR 331, ENGR 331H, ME 331H, NE 331, NE 331H, NSE 331, NSE 331H
ME 331H, INTRODUCTORY FLUID MECHANICS, 4 Credits

Introduces the concepts and applications of fluid mechanics and dimensional analysis with an emphasis on fluid behavior, internal and external flows, analysis of engineering applications of incompressible pipe systems, and external aerodynamics. CROSSLISTED as ME 331/ NSE 331.

Attributes: HNRS – Honors Course Designator
Prerequisite: ((MTH 254 with C or better or MTH 254H with C or better) and (MTH 256 [C] or MTH 256H [C]) and (ENGR 212 [C] or ENGR 212H [C]) and (ENGR 311 [C] or ME 311 [C] or ME 311H [C] or NSE 311 [C] or NSE 311H [C] or NE 311 [C] or NE 311H [C]))
Equivalent to: ME 331, NE 331, NE 331H, NSE 331, NSE 331H

ME 332, HEAT TRANSFER, 4 Credits

A treatment of conductive, convective and radiative energy transfer using control volume and differential analysis and prediction of transport properties. CROSSLISTED as ME 332/NSE 332.

Prerequisite: ((MTH 256 with C or better or MTH 256H with C or better) and (ENGR 212 [C] or ENGR 212H [C]) and (ME 311 [C] or ME 311H [C] or NE 311 [C] or NE 311H [C]) and (ME 331 [C] or ME 331H [C] or NSE 331 [C] or NSE 331H [C] or NE 331 [C] or NE 331H [C]))
Equivalent to: ME 332H, NE 332, NE 332H, NSE 332, NSE 332H

ME 332H, HEAT TRANSFER, 4 Credits

A treatment of conductive, convective and radiative energy transfer using control volume and differential analysis and prediction of transport properties. CROSSLISTED as ME 332/NSE 332.

Attributes: HNRS – Honors Course Designator
Prerequisite: ((MTH 256 with C or better or MTH 256H with C or better) and (ENGR 212 [C] or ENGR 212H [C]) and (ME 311 [C] or ME 311H [C] or NE 311 [C] or NE 311H [C]) and (ME 331 [C] or ME 331H [C] or NSE 331 [C] or NSE 331H [C] or NE 331 [C] or NE 331H [C]))
Equivalent to: ENGR 332, ME 332, NE 332, NSE 332, NSE 332H

ME 351, INTRODUCTION TO INSTRUMENTATION AND MEASUREMENT SYSTEMS, 4 Credits

Illustrates the function, operation, and application of common mechanical engineering instruments, measurement principles, and statistical analysis. Demonstrates elements of measurement systems, including transduction, signal conditioning, and data recording. Examines function and operation of digital data acquisition systems.

Prerequisite: (ENGR 202 with C or better or ENGR 202H with C or better) and (ENGR 212 [C] or ENGR 212H [C]) and (ENGR 213 [C] or ENGR 213H [C])
Equivalent to: ME 451

ME 373, MECHANICAL ENGINEERING METHODS, 4 Credits

Analytical and numerical methods for solving representative mechanical engineering problems. Lec/rec.

Prerequisite: (ENG 112 with C or better or ENG 112H with C or better) and (MTH 256 [C] or MTH 256H [C]) and MTH 341 [C]
Equivalent to: ME 373H

ME 373H, MECHANICAL ENGINEERING METHODS, 4 Credits

Analytical and numerical methods for solving representative mechanical engineering problems. Lec/rec.

Attributes: HNRS – Honors Course Designator
Prerequisite: (ENG 112 with C or better or ENG 112H with C or better) and (MTH 256 [C] or MTH 256H [C]) and MTH 341 [C]
Equivalent to: ME 373

ME 382, INTRODUCTION TO DESIGN, 4 Credits

Organization, planning, economics, and the use of creativity and optimization in solving mechanical design problems. Case studies and/or industrial design problems. Lec/lab.

Prerequisite: ENGR 248 with C or better and ME 250 (may be taken concurrently) [C] and ENGR 212 [C] and ENGR 213 [C]
Equivalent to: ME 382H

ME 382H, INTRODUCTION TO DESIGN, 4 Credits

Organization, planning, economics, and the use of creativity and optimization in solving mechanical design problems. Case studies and/or industrial design problems. Lec/lab.

Attributes: HNRS – Honors Course Designator
Prerequisite: ENGR 248 with C or better and ME 250 (may be taken concurrently) [C] and (PH 211 [C] or PH 211H [C])
Equivalent to: ME 382

ME 383, MECHANICAL COMPONENT DESIGN, 4 Credits

Failure analysis and design of machine components. Lec/lab.

Prerequisite: ME 316 with C or better and ME 250 (may be taken concurrently) [C] and (ENG 212 [C] or ENG 212H [C]) and ENG 213 [C]
Equivalent to: ME 383H

ME 383H, MECHANICAL COMPONENT DESIGN, 4 Credits

Failure analysis and design of machine components. Lec/lab.

Attributes: HNRS – Honors Course Designator
Prerequisite: ME 316 with C or better and ME 250 (may be taken concurrently) [C] and (ENG 212 [C] or ENG 212H [C]) and ENG 213 [C]
Equivalent to: ME 383

ME 401, RESEARCH, 1-16 Credits

This course is repeatable for 9 credits.

ME 403, THESIS, 1-16 Credits

This course is repeatable for 16 credits.

ME 405, READING AND CONFERENCE, 1-16 Credits

Equivalent to: ME 405H
This course is repeatable for 9 credits.
ME 405H, READING AND CONFERENCE, 1-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: ME 405
This course is repeatable for 9 credits.

ME 406, PROJECTS, 1-16 Credits
This course is repeatable for 15 credits.

ME 407, SEMINAR, 1-16 Credits
Equivalent to: ME 407H
This course is repeatable for 2 credits.

ME 410, INTERNSHIP, 1-16 Credits
Credits may not apply toward BS degree in Mechanical Engineering. Graded P/N.
This course is repeatable for 16 credits.

ME 411, AEROSPACE APPLICATIONS IN MECHANICAL ENGINEERING, 4 Credits
Provides students with the fundamentals of mechanical engineering applications to aerospace. Topics covered include an overview of modern aircraft and spacecraft analysis, with an emphasis on performance, stability, structures, materials, FAA and FAR standards and current professional practices in the conceptual design of aerospace vehicles. Student projects will integrate course topics.
Prerequisite: (ME 316 with C or better and (ME 317 [C] or ME 317H [C]) and (ME 331 [C] or ME 331H [C]) and (ME 373 [C] or ME 373H [C]))

ME 412, DESIGN OF MECHANISMS, 4 Credits
Analysis and study of the function, classification, position, velocity, and acceleration of multi-element mechanical linkages and mechanisms. Synthesis of mechanisms for specified multiple point paths, quick return, dwell, and straight-line motion. The lecture will instruct students in the kinematic analysis and synthesis of mechanisms through the use of theory and software packages. The laboratory will familiarize students with a modern mechanism design and animation software package. Lec/lab.
Prerequisite: (ME 317 with C or better or ME 317H with C or better) and ME 383 [C]

ME 420, APPLIED STRESS ANALYSIS, 4 Credits
Elasticity theory, failure theories, energy methods, finite element analysis.
Prerequisite: ME 316 with C or better

ME 422, MECHANICAL VIBRATIONS, 4 Credits
Dynamic response of single and multiple degree-of-freedom systems.
Prerequisite: ME 317 with C or better or ME 317H with C or better
Equivalent to: ME 422H

ME 422H, MECHANICAL VIBRATIONS, 4 Credits
Dynamic response of single and multiple degree-of-freedom systems.
Attributes: HNRS – Honors Course Designator
Prerequisite: ME 317 with C or better or ME 317H with C or better
Equivalent to: ME 422

ME 424, FINITE ELEMENT MODELING OF MECHANICAL ENGINEERING SYSTEMS, 3 Credits
Application of modern finite element code in the analysis of complex mechanical engineering systems. Extensive use of engineering workstations. Lec/lab.
Prerequisite: ME 420 with C or better or ME 520 with C or better

ME 430, SYSTEMS DYNAMICS AND CONTROL, 4 Credits
Modeling and analysis of linear continuous systems in time and frequency domains. Fundamentals of single-input-single-output control system design. CROSSLISTED as ECE 451/ME 430.
Prerequisite: (ME 317 with C or better or ME 317H with C or better or (ECE 351 with C or better and ECE 352 [C] and (ENGR 212 [C] or ENGR 212H [C]) )
Equivalent to: ECE 451, ME 430H
Available via Ecampus

ME 430H, SYSTEMS DYNAMICS AND CONTROL, 4 Credits
Modeling and analysis of linear continuous systems in time and frequency domains. Fundamentals of single-input-single-output control system design. CROSSLISTED as ECE 451/ME 430.
Attributes: HNRS – Honors Course Designator
Prerequisite: (ME 317 with C or better or ME 317H with C or better or (ECE 351 with C or better and ECE 352 [C] and (ENGR 212 [C] or ENGR 212H [C]) )
Equivalent to: ECE 451, ME 430

ME 443, RENEWABLE ENERGY: THERMAL FLUID SYSTEMS, 4 Credits
Evaluates several thermal/fluid power conversion strategies that deal with both thermal and fluid energy sources in terms of basic conversion technology, resource potential and developmental challenges. There are four modules, each targeting a particular renewable energy system in thermal and fluid sciences.
Prerequisite: (ME 311 with C or better or ME 311H with C or better or NE 311 with C or better or NE 311H with C or better) and (ME 331 [C] or ME 331H [C] or NE 331 [C] or NE 331H [C]) and (ME 332 [C] or ME 332H [C] or NE 332 [C] or NE 332H [C])
ME 444, THERMAL SYSTEMS DESIGN
AND ANALYSIS, 4 Credits
Integration of the concepts, laws, and methodologies from fluid
mechanics, heat transfer, and thermodynamics, into a set of practical
tools for thermal energy systems design and analysis.
Prerequisite: (ME 332 with C or better or ME 332H with C or better
or NSE 332 with C or better or NSE 332H with C or better) and (ME 312 (may
be taken concurrently) [C] or ME 312H (may be taken concurrently) [C]
or NSE 312 (may be taken concurrently) [C] or NSE 312H (may be taken
concurrently) [C])

ME 445, INTRODUCTION TO COMBUSTION,
4 Credits
Study of combustion science based on the background of chemistry,
thermodynamics, fluid mechanics, heat and mass transfer. Stoichiometry,
energetics of chemical reactions, flame temperature, equilibrium product
analyses, chemical kinetics, and chain reactions.
Prerequisite: (ME 312 with C or better or ME 312H with C or better)
and (ME 331 [C] or ME 331H [C])

ME 450, APPLIED HEAT TRANSFER, 4
Credits
An intermediate heat transfer course seeking to lay a foundation for
determining the heating and cooling characteristics with a variety of
modern and classical processes. Included is design of multi-component
heat transfer systems. Lecture, 110 minutes twice per week.
Prerequisite: ME 332 with C or better or ME 332H with C or better

ME 451, INTRODUCTION TO
INSTRUMENTATION AND MEASUREMENT
SYSTEMS, 4 Credits
Function, operation, and application of common mechanical engineering
instruments, measurement principles, and statistical analysis. Major
elements of measurement systems, including transduction, signal
conditioning, and data recording. Function and operation of digital data
acquisition systems. Lec/lab.
Prerequisite: (ENG 202 with C or better or ENGR 202H with C or better)
and (ME 311 [C] or ME 311H [C]) and ME 316 [C] and (ME 317 [C] or
ME 317H [C]) and (ME 373 [C] or ME 373H [C]) and (ST 314 [C] or ST 314H
[C])
Equivalent to: ME 351

ME 452, THERMAL AND FLUIDS
SCIENCES LABORATORY, 4 Credits
Course emphasis is on experiments related to thermodynamics, heat
transfer, and fluid mechanics. Proper experimental methods, data and
uncertainty analysis related to thermal and fluids measurements are
discussed.
Attributes: HNRS – Honors Course Designator
Prerequisite: (ME 311 with C or better or ME 311H with C or better) and
(ME 331 [C] or ME 331H [C]) and (ME 332 [C] or ME 332H [C])
Equivalent to: ME 452

ME 452H, THERMAL AND FLUIDS
SCIENCES LABORATORY, 4 Credits
This course is repeatable for 16 credits.

ME 453, STRUCTURE AND MECHANICS
LABORATORY, 4 Credits
Techniques for measurement of structural response and material
properties. Proper use of rosette strain gauges, load cells, and
displacement transducers. Full-field strain measurement using
photoelasticity and digital image correlation. Proper implementation of
material testing standards. Characterization of anisotropic composite
materials.
Prerequisite: ME 451 with C or better

ME 460, INTERMEDIATE FLUID
MECHANICS, 4 Credits
Ideal fluid flow including potential flow theory. Introduction to
compressible flow. Viscous flow and boundary layer theory. Introduction
to turbulence.
Prerequisite: ME 331 with C or better or ME 331H with C or better

ME 461, GAS DYNAMICS, 4 Credits
Studies one-dimensional isentropic flow, nozzles, diffusers, normal and
oblique shocks, compressible flow with friction and heating, and an
introduction to propulsion systems.
Prerequisite: (ME 312 with C or better or ME 312H with C or better) and
(ME 331 [C] or ME 331H [C])

ME 480, MATERIALS SELECTION, 3
Credits
Selecting materials for engineering applications. The major families of
materials, their properties, and how their properties are controlled; case
studies and design projects emphasizing materials selection.
Prerequisite: MATS 322 with C or better or ENGR 322 with C or better

ME 484, FRACTURE OF MATERIALS, 3
Credits
Fracture mechanics and fatigue mechanisms: mechanisms of ductile
and brittle fracture. Environmentally induced fracture and fatigue.
Considerations in design of engineering materials and structures will be
discussed.
Prerequisite: MATS 322 with C or better or ENGR 322 with C or better

ME 499, SPECIAL TOPICS, 0-16 Credits
This course is repeatable for 16 credits.

ME 499H, SPECIAL TOPICS, 0-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: ME 499
This course is repeatable for 16 credits.
ME 501, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

ME 502, INDEPENDENT STUDIES, 1-16 Credits
This course is repeatable for 16 credits.

ME 503, THESIS, 1-16 Credits
This course is repeatable for 999 credits.

ME 505, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

ME 506, PROJECTS, 1-16 Credits
Graded P/N.
This course is repeatable for 16 credits.

ME 507, SEMINAR, 1-16 Credits
This course is repeatable for 16 credits.

ME 508, THERMAL FLUID SCIENCE SEMINAR, 1 Credit
Student participation seminar experience for 1 course credit. Students will present and listen to seminars concerning ongoing research within the thermal fluid sciences.

ME 509, MATERIALS SCIENCE SEMINAR, 1 Credit
Student participation seminar experience for one credit; students will listen to seminars concerning ongoing research activities within materials science. Students will also have the opportunity to present their own research results periodically. Graded P/N.
Equivalent to: MATS 509

ME 511, PRECISION MACHINE DESIGN, 3 Credits
Tolerance analysis and application in design/manufacturing practice, principles of machine design and computational analysis of errors in machine design, sensor mounting and sensor calibration, machine level error budget with geometric and thermal errors, structural design of joints and supports, deterministic damping, exact constraint design for flexures and couplings, bearing systems design, motion and power system design for machine tools. CROSSLISTED as ME 511/MFGE 511.
Equivalent to: MFGE 511
Recommended: An understanding of mechanical component design and solid mechanics.

ME 512, DESIGN OF MECHANISMS, 4 Credits
Analysis and study of the function, classification, position, velocity, and acceleration of multi-element mechanical linkages and mechanisms. Synthesis of mechanisms for specified multiple point paths, quick return, dwell, and straight-line motion. The lecture will instruct students in the kinematic analysis and synthesis of mechanisms through the use of theory and software packages. The laboratory will familiarize students with a modern mechanism design and animation software package. Lec/lab.
Recommended: (ME 317 or ME 317H) and ME 383

ME 513, BIO-INSPIRED DESIGN, 4 Credits
Interception of design and biology that seeks to systematically mine biological knowledge to solve design problems. Investigates inspiration from nature from three different types: visual, conceptual, and computational. Includes design rules, heuristics, principles or patterns to solve engineering problems. Algorithmic bio-inspiration emulates natural algorithms for control or optimization problems.

ME 515, RISK AND RELIABILITY ANALYSIS IN ENGINEERING DESIGN, 4 Credits
Fundamentals of risk, uncertainty, and reliability. Methods to analyze and quantify the risk of failures, and the reliability of complex systems, including fault tree analysis, reliability block diagrams, probabilistic risk assessment. Introduction to research methods for risk and reliability analysis during the early design stages.

ME 516, MODELING AND ANALYSIS OF COMPLEX SYSTEMS, 4 Credits
Introduction to challenges and considerations when designing complex systems. Fundamentals of systems engineering and methods used in practice. Models and tools used to enable the use of models for trade studies during the design of complex systems. Model-based design environments and methodologies. Introduction to decision support tools in design.

ME 517, OPTIMIZATION IN DESIGN, 4 Credits
Optimization methods as applied to engineering design, theory and application of nonlinear optimization techniques for multivariate unconstrained and constrained problems. Model boundedness and sensitivity.

ME 519, SELECTED TOPICS IN DESIGN, 3-4 Credits
Topics in mechanical design selected from the following: design processes, quality engineering, design for assembly, statistical machine design, the Taguchi method, and parametric design.
This course is repeatable for 32 credits.

ME 520, APPLIED STRESS ANALYSIS, 4 Credits
Elasticity theory, failure theories, energy methods, finite element analysis.
Recommended: ME 316
ME 521, LINEAR ELASTICITY, 4 Credits
A general introduction to the theory of elasticity. The solution of 2-D problems using the Airy stress function in rectangular and polar coordinates. The solution of 3-D problems using the Galerkin vector, the Papkovich-Neuber solution, and complex variable methods. Applications to asymptotic fields at discontinuities, contact and crack problems, and thermoelasticity.
Recommended: ME 316

ME 522, MECHANICAL VIBRATIONS, 4 Credits
Dynamic response of single and multiple degree-of-freedom systems.
Recommended: ME 317

ME 523, ADVANCED STRESS ANALYSIS, 4 Credits
An introduction to the mechanics of nonlinear elastic, plastic, and viscoelastic material behavior including large deformations.
Recommended: ME 316

ME 524, FINITE ELEMENT MODELING OF MECHANICAL ENGINEERING SYSTEMS, 3 Credits
Application of modern finite element code in the analysis of complex mechanical engineering systems. Extensive use of engineering workstations. Lec/lab.
Prerequisite: ME 520 with C or better

ME 526, NUMERICAL METHODS FOR ENGINEERING ANALYSIS, 3 Credits
Equivalent to: NE 526, NSE 526
Recommended: Programming experience and previous exposure to numerical methods

ME 529, SELECTED TOPICS IN SOLID MECHANICS, 3-4 Credits
Advanced topics in solid mechanics emphasizing research applications of current interest.
This course is repeatable for 32 credits.

ME 531, LINEAR MULTIVARIABLE CONTROL SYSTEMS I, 4 Credits
Theoretical design of control systems for systems modeled by linear multivariable differential equations. Topics covered include controllability, observability, state feedback control, pole placement, output feedback, estimator design, and control designs that include both estimators and regulators.
Prerequisite: ME 531 with C or better

ME 532, LINEAR MULTIVARIABLE CONTROL SYSTEMS II, 4 Credits
Focuses on designing control systems where the device to be controlled is an uncertain system, yet can be described by a set of linear differential equations. Lec.
Prerequisite: ME 531 with C or better

ME 533, NONLINEAR DYNAMIC ANALYSIS, 4 Credits
Course focuses on understanding the behavior of nonlinear dynamic systems of interest to mechanical engineers. Lec.
Recommended: ME 317

ME 534, NONLINEAR MULTIVARIABLE CONTROL SYSTEMS, 4 Credits
Focuses on designing control systems when the device to be controlled is mathematically described by a nonlinear set of differential equations. Lec.
Prerequisite: ME 533 with C or better

ME 539, SELECTED TOPICS IN DYNAMICS, 1-16 Credits
Advanced topics in dynamics emphasizing research applications of current interest.
This course is repeatable for 30 credits.

ME 540, INTERMEDIATE THERMODYNAMICS, 4 Credits
Students are expected to master classical thermodynamics by way of solving extended problems using software tools. Statistical thermodynamics concepts are also introduced and exercised.
Recommended: ME 312

ME 541, LIQUID-VAPOR PHASE CHANGE AND HEAT TRANSFER, 4 Credits
Advanced treatment of underlying physics and engineering modeling approaches for heat transfer associated with vapor/liquid phase change processes. Topics include thermodynamics and mechanical aspects of phase change processes, pool boiling, filmwise and dropwise condensation, internal convective boiling and condensation, and other emerging areas in phase change heat transfer.

ME 543, RENEWABLE ENERGY: THERMAL FLUID SYSTEMS, 4 Credits
Evaluates several thermal/fluid power conversion strategies that deal with both thermal and fluid energy sources in terms of basic conversion technology, resource potential and developmental challenges. There are four modules, each targeting a particular renewable energy system in thermal and fluid sciences.
Recommended: (ME 311 or ME 311H or NE 311 or NE 311H) and (ME 331 or ME 331H or NE 331 or NE 331H) and (ME 332 or ME 332H or NE 332 or NE 332H)

ME 544, ADVANCED POWER GENERATION SYSTEMS, 4 Credits
Thermal mechanical evaluation of modern power generation technologies, including fossil and nuclear Rankine cycle power plants, gas turbines, cogeneration power plants, distributed power generation and fuel cells. Lec/rec.
Recommended: ME 312 and (ME 332 or ME 332H)
ME 545, INTRODUCTION TO COMBUSTION, 4 Credits
Study of combustion science based on the background of chemistry, thermodynamics, fluid mechanics, heat and mass transfer. Stoichiometry, energetics of chemical reactions, flame temperature, equilibrium product analyses, chemical kinetics, and chain reactions.
Recommended: ME 312 and (ME 332 or ME 332H)

ME 546, CONVECTION HEAT TRANSFER, 3 Credits
An advanced treatment of forced and natural convection heat transfer processes emphasizing underlying physical phenomena. Current topical literature will be considered; analytical and numerical problem solving is included.
Recommended: (ME 332 or ME 332H) and ME 373

ME 547, CONDUCTIVE HEAT TRANSFER, 3 Credits
Analytical and numerical solutions to steady state and transient conduction problems.
Recommended: (ME 332 or ME 332H) and ME 373

ME 548, RADIATION HEAT TRANSFER, 3 Credits
Analytical and numerical methods of solution of thermal radiation problems.
Recommended: (ME 332 or ME 332H) and ME 373

ME 549, SELECTED TOPICS IN HEAT TRANSFER, 3 Credits
Topics in heat transfer including advanced problems in conduction, radiation, and convection. Additional examination of heat transfer in multiphase systems, inverse problems, combined modes, equipment design, solution techniques and other topics of current interest considered, including extensive use of current literature. Not all topics covered each year.
This course is repeatable for 9 credits.

ME 550, APPLIED HEAT TRANSFER, 4 Credits
An intermediate heat transfer course seeking to lay a foundation for determining the heating and cooling characteristics with a variety of modern and classical processes. Included is design of multi-component heat transfer systems. Lecture, 110 minutes twice per week.
Recommended: ME 332 or ME 332H

ME 552, MEASUREMENTS IN FLUID MECHANICS AND HEAT TRANSFER, 4 Credits
Course emphasis is on measurement techniques and data analysis methods related to fluid mechanics and heat transfer. Proper experimental methods, data and uncertainty analyses related to thermal and fluids measurements are discussed. Local and spatial mapping of fluid and thermal fields are highlighted.
Recommended: (ME 331 or ME 331H) and (ME 332 or ME 332H) and ME 451.

ME 553, STRUCTURE AND MECHANICS LABORATORY, 4 Credits
Techniques for measurement of structural response and material properties. Proper use of rosette strain gauges, load cells, and displacement transducers. Full-field strain measurement using photoelasticity and digital image correlation. Proper implementation of material testing standards. Characterization of anisotropic composite materials.
Recommended: ME 451

ME 560, INTERMEDIATE FLUID MECHANICS, 4 Credits
Ideal fluid flow including potential flow theory. Introduction to compressible flow. Viscous flow and boundary layer theory. Introduction to turbulence.
Recommended: ME 331

ME 561, GAS DYNAMICS, 4 Credits
Studies one-dimensional isentropic flow, nozzles, diffusers, normal and oblique shocks, compressible flow with friction and heating, and an introduction to propulsion systems.
Recommended: ME 312 and (ME 331 or ME 331H)

ME 564, TURBULENCE MODELING, 3 Credits
An introductory course on theory of different turbulence modeling techniques such as Reynolds Averaged Navier Stokes (RANS), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS) applied to a range of turbulent flows including free shear flows, boundary layers, and internal flows.
Prerequisite: ME 560 with C or better and (ME 565 [C] or ME 566 [C])

ME 565, INCOMPRESSIBLE FLUID MECHANICS, 3 Credits
Generalized fluid mechanics; kinematics; methods of description, geometry of the vector field, dynamics of nonviscous fluids, potential motion, two-dimensional potential flow with vorticity.

ME 566, VISCOUS FLOW, 3 Credits
Boundary layer, stability, transition prediction methods, computational methods in fluid mechanics, recent developments.

ME 567, ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID DYNAMICS, 4 Credits
Basic concepts of computational fluid dynamics, a technique used for solving fully three-dimensional fluid flow problems with no exact solution, will be discussed and applied to general engineering applications using commercially available software. Lec.
Recommended: ME 312 and (ME 331 or ME 331H)
ME 568, TURBULENT FLOW DYNAMICS, 4 Credits
An introductory course of the basic physics of turbulent flows, coverage will include statistical methods and physical interpretation of a range of flows including boundary layer flows, internal flows, and environmental flows.
Prerequisite: ME 560 with C or better
Recommended: A first course in fluid mechanics such as ME 331

ME 569, SELECTED TOPICS IN FLUID MECHANICS, 2-4 Credits
Topics in fluid mechanics emphasizing research applications of current interest.
This course is repeatable for 32 credits.

ME 580, MATERIALS SELECTION, 3 Credits
Selecting materials for engineering applications. The major families of materials, their properties, and how their properties are controlled; case studies and design projects emphasizing materials selection. Lec/lab.
Equivalent to: MATS 580
Recommended: MATS 322 or ENGR 322

ME 583, COMPOSITE MATERIALS, 3 Credits
Explores fibers and matrices, mechanics of composites, reinforcement and failure mechanisms, properties and applications.
Recommended: ME 420 and ME 483 with a minimum grade of C

ME 585, FATIGUE OF MATERIALS, 4 Credits
Analyzes the failure of materials by fatigue including how fatigue behavior is characterized, how fatigue failure is predicted, the physical mechanisms responsible for fatigue failure of various materials, and how such behavior is related to the atomic structure and microstructure of the material.
Prerequisite: ME 570 with C or better or MATS 570 with C or better

ME 589, SELECTED TOPICS IN MATERIALS, 3 Credits
Topics in materials science to correspond to areas of graduate research. Topics will be chosen from the following list: optical materials, dielectrics, oxidation and corrosion, ceramics, thermophysical properties, polymers and viscoelasticity, coatings and thin films. Lec/rec.
This course is repeatable for 32 credits.

ME 596, SELECTED TOPICS IN THERMODYNAMICS, 3 Credits
Topics in thermodynamics including advanced problems in classical thermodynamics and statistical thermodynamics of current interest. Topics will likely be considered, including extensive use of literature. Not all topics covered each year.
This course is repeatable for 32 credits.

ME 597, PRECISION MOTION GENERATION, 4 Credits
Introduces fundamental knowledge in mechatronic systems used in manufacturing equipment such as CNC machine tools, and their computer numerical controls. Students will be exposed to sensors and actuators utilized in machine tools, industrial robots and for process automation. Fundamental knowledge to model and identify dynamics of motion delivery systems, design and analysis of accurate position control algorithms for precision motion generation will be covered. Digital motion control design will be introduced. Motion planning and real-time path interpolation algorithms will be covered. Students will be able to design NC systems for 2D motion platforms.
Recommended: ME 430

ME 599, SPECIAL TOPICS, 0-16 Credits
This course is repeatable for 32 credits.

ME 601, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

ME 603, THESIS, 1-16 Credits
This course is repeatable for 999 credits.

ME 605, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

ME 606, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

ME 607, SEMINAR, 1-16 Credits
This course is repeatable for 16 credits.

ME 611, MODERN PRODUCT DESIGN, 4 Credits
Modern product development, design and prototyping are covered. Product development and prototyping is examined from a research standpoint in this course. Customer outcomes gathering, functional modeling, product architecture, modern techniques for concept generation and selection are explored. Also covered are recently developed theories and techniques for prototyping. The topics’ place in the overall design process is shown through a product development and prototyping project.

ME 613, SUSTAINABLE PRODUCT DESIGN, 4 Credits
Graduate students will work in multidisciplinary design teams to develop innovative and environmentally friendly products. Combining the principles of integrated product development and sustainable design thinking, students will (a) advance their knowledge of the design process by creating a patent-quality new product, (b) learn and employ environmentally-minded design theory and methods, including various software packages and online tools, and (c) further enhance team-working skills by working collaboratively in a professional design team. Sustainable Product Development is conducted as a collaborative design experience, in that lectures, discussion, and team working time will be integrated into class sessions.
ME 615, DESIGN UNDER UNCERTAINTY, 4 Credits
Tackles the problem of decision making in engineering design. The fundamental challenge faced in making decisions in engineering designs is that they are almost exclusively decisions made under uncertainty. Sources of uncertainty could result from engineering models, experiments conducted, or lack of knowledge of future events. The course will cover three basic topics 1) how do we quantify uncertainty, 2) how do we account for the uncertainty in decision making, and 3) how do we make design selection decisions about products or systems we design.

Prerequisite: ME 517 with C or better

ME 617, DESIGN AUTOMATION, 4 Credits
Design automation is the field of study whereby advanced numerical methods are used to automate difficult or tedious design decisions. Typically, such methods are based on numerical optimization and artificial intelligence. They work in tandem with other engineering digital tools like computer-aided design, computer-aided manufacturing, and finite-element analysis. This course builds upon a fundamental understanding of optimization to introduce students to a range of different techniques that may be used to support engineering decision-making. This includes heuristic methods, AI tree-search, discrete and stochastic algorithms. The course concludes with discussion of recent innovations in multi-objective, multi-disciplinary and robust optimization.

Prerequisite: ME 517 with C or better

ME 667, COMPUTATIONAL FLUID DYNAMICS, 3 Credits
Application of modern computational techniques to solve a wide variety of fluid dynamics problems including both potential and viscous flow with requirements for computer code development.

Prerequisite: (ME 560 with C or better or ME 565 with C or better or ME 566 with C or better) and (ME 526 [C] or ME 575 [C])