CIVIL ENGINEERING (CE)

CE 199. SPECIAL TOPICS. (1-4 Credits)

CE 202. CIVIL ENGINEERING: GEOSPATIAL INFORMATION AND GIS. (3 Credits)
Introductory design principles presented with the use of GIS and geospatial information (remote sensing, GPS, surveying, and aerial photography) for civil engineering problem solving. Introduction to the integration of geospatial data and analysis for decision making and management for site selection, mitigation, change analysis, modeling and assessment. Standard software and custom programming used in course. Students participate in both individual and team projects and presentations. Projects from the area of civil engineering. Lec/lab.
Prerequisites: CE 201 with C or better or CCE 201 with C or better or ENGR 248 with C or better

CE 299. SPECIAL TOPICS. (1-4 Credits)
Graded P/N.
Equivalent to: CE 299H

CE 299H. SPECIAL TOPICS. (1-4 Credits)
Graded P/N.
Attributes: HNRS – Honors Course Designator
Equivalent to: CE 299

CE 301. CE JUNIOR SEMINAR. (1 Credit)
Professional practices of civil engineering.

CE 311. FLUID MECHANICS. (4 Credits)
Fluid properties, fluid statics, fluid motion, conservation of mass, momentum and energy for incompressible fluids, dimensional analysis, civil engineering applications.

CE 313. HYDRAULIC ENGINEERING. (4 Credits)
Analysis of large civil engineering fluid systems including conduit flow, multiple reservoirs, pipe networks, pumps, turbines, open channel flow, and hydraulic structures.
Prerequisites: CE 311 with C or better or CHE 331 with C or better or CHE 331H with C or better

CE 361. SURVEYING THEORY. (4 Credits)
Use of surveying equipment, Gaussian error theory applied to measurements, calculations of position on spherical and plane surfaces, state plane coordinate systems, introduction to global positioning systems.

CE 365. HIGHWAY LOCATION AND DESIGN. (3 Credits)
Curve problems in highway design, including circular, vertical, compound curves and spirals; earth distribution analysis; preliminary office studies; paper location procedures and field layout problems.
Prerequisites: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 372. GEOTECHNICAL ENGINEERING I. (4 Credits)
Basic soil mechanics including the identification and classification of soil, principles of compaction and consolidation, flow through porous media, effective stress, and shear strength. Lec/lab.
Prerequisites: ENGR 213 with C or better or ENGR 213H with C or better and (CE 311 may be taken concurrently) [C] or CEM 311 (may be taken concurrently) [C] or CHE 331 (may be taken concurrently) [C] or CHE 331H (may be taken concurrently) [C]

CE 373. GEOTECHNICAL ENGINEERING II. (4 Credits)
Application of fundamental soil mechanics principles to analyses of slope stability, retaining structures, and foundation support. Lec/rec.
Prerequisites: CE 372 with C or better or FE 315 with C or better

CE 381. STRUCTURAL THEORY I. (4 Credits)
Analysis of statically determinate structures (beams, frames, trusses, arches, and cables). Approximate analysis, influence lines, deflections.
Prerequisites: ENGR 213 with C or better or ENGR 213H with C or better

CE 382. STRUCTURAL THEORY II. (4 Credits)
Analysis of statically indeterminate structures (beams, frames, trusses). Deflections. Energy methods, introduction to matrix methods.
Prerequisites: CE 381 with C or better

CE 383. DESIGN OF STEEL STRUCTURES. (4 Credits)
Introduction to design of steel members, connections and structural systems. Lec/lab.
Prerequisites: CE 382 with C or better

CE 392. INTRODUCTION TO HIGHWAY ENGINEERING. (4 Credits)
Highway engineering standards, geometric design, cross section and roadside design, highway surfaces, pavement design, highways and the environment, highway construction and maintenance.
Prerequisites: (ENGR 212 with C or better or ENGR 212H with C or better) and CE 361 [C]

CE 401. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

CE 403. THESIS. (1-16 Credits)
This course is repeatable for 16 credits.

CE 405. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

CE 406. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

CE 407. SEMINAR. (1-3 Credits)
Understanding complexity and systems thinking.
Equivalent to: CE 409H

CE 407H. SEMINAR. (1-3 Credits)
Understanding complexity and systems thinking.
Attributes: HNRS – Honors Course Designator
Equivalent to: CE 407

CE 408. WORKSHOP. (1-3 Credits)
This course is repeatable for 3 credits.

CE 409. SPECIAL TOPICS. (1-4 Credits)
This course is repeatable for 16 credits.

CE 410. INTERNSHIP. (1-12 Credits)
This course is repeatable for 16 credits.

CE 411. OCEAN ENGINEERING. (4 Credits)
Introduction to linear wave theory and wave forces on piles. Guided design of wave gauge facility at Coos Bay, Oregon, that requires synthesizing fluid mechanics, structural design and foundation design.
Prerequisites: CE 313 with C or Coos Bay, Oregon, and CEM 311 with C or better

CE 412. HYDROLOGY. (4 Credits)
Fundamentals of hydrology, the hydrologic cycle, precipitation, streamflow, hydrograph analysis and hydrologic measurements.

CE 413. GIS IN WATER RESOURCES. (3 Credits)
Course presents Geographic Information System (GIS) technology for developing solutions to water resource problems: water quality, availability, flooding, the natural environment, and management of water resources. Typical GIS data models for hydrologic information are presented. Synthesis of geospatial and temporal water resources to support hydrologic analysis and modeling are covered.
Recommended: Senior standing or a previous introductory GIS course
CE 415. COASTAL INFRASTRUCTURE. (3 Credits)
Planning and design criteria of coastal infrastructure, including breakwaters, jetties, sea walls, groins, piers, submerged pipelines, harbor design, and tsunami defense. Use of laboratory models, numerical simulations, and field observations for design.
Prerequisites: CE 313 with C or better

CE 417. HYDRAULIC ENGINEERING DESIGN. (4 Credits)
Theory, planning, analysis, and design of hydraulic structures. Application of basic principles detailed analysis and design. Engineering planning and design of water resource systems.
Prerequisites: CE 313 with C or better

CE 418. *CIVIL ENGINEERING PROFESSIONAL PRACTICE. (3 Credits)
Engineering career paths; ethics and professionalism, project planning, execution and delivery; team building/management; marketing proposals; engineering overseas; dispute resolution; partnering; effective decision making; uncertainty and risk analysis; and current industry design and construction methods. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisites: CE 382 with C or better and CE 313 [C] and (CE 372 [C] or FE 315 [C])

CE 419. *CIVIL INFRASTRUCTURE DESIGN. (3 Credits)
A capstone design project experience exposing students to problems and issues similar to those encountered in the practice of civil engineering. Students should have completed ALL other required courses in their degree program prior to registering for this course. Lec/rec.
Attributes: CWIC – Core, Skills, WIC
Prerequisites: CE 418 with C or better

CE 420. ENGINEERING PLANNING. (4 Credits)
The application of systems analysis to structuring, analyzing, and planning for civil engineering projects. Concept of the system and its environment; setting goals, objectives, and standards; evaluation criteria; solution generation and analysis; evaluation and optimization. Project management using precedence node diagramming; resource allocation and leveling; time-cost trade-off; and PERT.

CE 424. CONTRACTS AND SPECIFICATIONS. (4 Credits)
Fundamentals of construction industry contracts, including technical specifications, and issues related to time, money, warranty, insurance, and changed conditions.

CE 427. TEMPORARY CONSTRUCTION STRUCTURES. (4 Credits)
Design and construction of temporary structures including formwork, shoring, and earth retaining structures.
Prerequisites: (CE 321 with C or better or CCE 321 with C or better) and (FE 315 [C] or CE 372 [C]) and (CEM 383 [C] or CE 383 [C])

CE 428. PROJECT MANAGEMENT FOR CIVIL ENGINEERS. (4 Credits)
Provides the prospective civil engineer with the technical knowledge and familiarity necessary to successfully and confidently manage projects of different sizes and complexity levels. It relies on basic knowledge and techniques developed by the Project Management Institute (PMI) and real-world examples (through lectures, example projects, case studies, and guest speakers) from the public and private sectors.

CE 461. PHOTOGRAMMETRY. (3 Credits)
Geometry of terrestrial and vertical photographs, flightline planning, stereoscopy and parallax, stereoscopic plotting instruments, analytical photogrammetry, orthophotography, introduction to photo interpretation, and aerial cameras.
Prerequisites: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 463. CONTROL SURVEYING. (4 Credits)
Global Positioning Systems (GPS) theory, networks, and fieldwork; control specifications, methods and problems in obtaining large area measurements; precise leveling; network adjustments using least square techniques; field instrument adjustments.
Prerequisites: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 465. OREGON LAND SURVEY LAW. (3 Credits)
Introduction to U.S. public land survey; Oregon state statutes, common law decisions, and administrative rules dealing with boundary law; case studies; unwritten land transfers; original and resurvey platting laws; guarantees of title; deed descriptions.
Prerequisites: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 469. PROPERTY SURVEYS. (3 Credits)
U.S. public land survey; restoration of corners, subdivision of sections; topographic mapping; subdivision and partition plats, resurvey plats, subdivision design; introduction to LIS/GIS; field astronomy.
Prerequisites: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 471. FOUNDATIONS FOR STRUCTURES. (3 Credits)
Criteria, theory, design, and construction for foundations of structures; use of in-situ tests for geotechnical engineering; computer applications.
Prerequisites: CE 373 with C or better or FE 316 with C or better

CE 479. SLOPE AND EMBANKMENT DESIGN. (3 Credits)
A comprehensive overview of evaluating stability and performance for natural and engineered slopes. Design aspects include construction of road embankments, slope remediation techniques and application of geosynthetics for slope stabilization, slope and wall construction, and drainage. CROSSLISTED as FE 479/FE 579.
Prerequisites: CE 373 with C or better or FE 316 with C or better

Equivalent to: FE 479

CE 481. REINFORCED CONCRETE I. (4 Credits)
Basic principles of reinforced concrete design; strength, stability, and serviceability criteria; design of reinforced concrete members for flexure and shear. Detailing, development length and splices.
Prerequisites: CE 382 with C or better

CE 482. MASONRY DESIGN. (3 Credits)
A critical examination in depth of masonry design topics.
Prerequisites: CE 481 with C or better

CE 484. WOOD DESIGN. (4 Credits)
Study of basic wood properties and design considerations. Design and behavior of wood connectors, beams, columns and beam columns. Introduction to plywood and glued laminated members. Analysis and design of structural diaphragms and shear walls. Lec/lab.
Prerequisites: CE 383 with C or better or CE 481 with C or better

CE 486. PRESTRESSED CONCRETE. (3 Credits)
Prestressed concrete analysis and design, systems of prestressing, materials, economics.
Prerequisites: CE 481 with C or better

CE 491. TRANSPORTATION ENGINEERING. (3 Credits)
Introduction to transportation engineering systems characteristics, traffic estimation, comprehensive transportation planning, highway economics, driver and vehicle characteristics, highway operations and capacity, signalization and control. Introduction to intelligent transportation.
Prerequisites: CE 392 with C or better and ST 314 [C]
CE 492. PAVEMENT STRUCTURES. (3 Credits)
Design and rehabilitation of pavement structures for streets, highways, and airports.
Prerequisites: CE 392 with C or better

CE 499. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

CE 501. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

CE 503. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

CE 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

CE 506. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

CE 507. SEMINAR. (1-16 Credits)
This course is repeatable for 16 credits.

CE 508. WORKSHOP. (1-3 Credits)
Graded P/N.
This course is repeatable for 3 credits.

CE 510. INTERNSHIP. (1-16 Credits)
This course is repeatable for 16 credits.

CE 511. OCEAN ENGINEERING. (4 Credits)
Introduction to linear wave theory and wave forces on piles. Guided design of wave gauge facility at Coos Bay, Oregon, that requires synthesizing fluid mechanics, structural design and foundation design. Recommended: CE 313 or CEM 311

CE 512. HYDROLOGY. (4 Credits)
Fundamentals of hydrology, the hydrologic cycle, precipitation, streamflow, hydrograph analysis and hydrologic measurements.

CE 513. GIS IN WATER RESOURCES. (3 Credits)
Course presents Geographic Information System (GIS) technology for developing solutions to water resource problems: water quality, availability, flooding, the natural environment, and management of water resources. Typical GIS data models for hydrologic information are presented. Synthesis of geospatial and temporal water resources to support hydrologic analysis and modeling are covered. Recommended: Senior standing or a previous introductory GIS course

CE 514. GROUNDWATER HYDRAULICS. (4 Credits)
Principles of groundwater flow and chemical transport in confined and unconfined aquifers, aquifer testing and well construction. Design of dewatering and contaminant recovery systems.
Prerequisites: CE 547 with B or better
Recommended: CE 313 and MTH 252

CE 515. COASTAL INFRASTRUCTURE. (3 Credits)
Planning and design criteria of coastal infrastructure, including breakwaters, jetties, sea walls, groins, piers, submerged pipelines, harbor design, and tsunami defense. Use of laboratory models, numerical simulations, and field observations for design. Recommended: CE 313

CE 517. HYDRAULIC ENGINEERING DESIGN. (4 Credits)
Theory, planning, analysis, and design of hydraulic structures. Application of basic principles detailed analysis and design. Engineering planning and design of water resource systems.
Recommended: CE 313

CE 518. GROUNDWATER MODELING. (4 Credits)
Application of numerical methods to the solution of water flow and solute transport through saturated and unsaturated porous media. Analysis of confined and unconfined aquifers. Computer solution of large-scale field problems including groundwater contamination and aquifer yield.
Prerequisites: CE 514 with C or better

CE 520. ENGINEERING PLANNING. (4 Credits)
The application of systems analysis to structuring, analyzing, and planning for civil engineering projects. Concept of the system and its environment; setting goals, objectives, and standards; evaluation criteria; solution generation and analysis; and evaluation and optimization. Project management using precedence node diagramming; resource allocation and leveling; time-cost trade-off; and PERT.

CE 524. CONTRACTS AND SPECIFICATIONS. (4 Credits)
Fundamentals of construction industry contracts, including technical specifications, and issues related to time, money, warranty, insurance, and changed conditions.

CE 526. ADVANCED CONCRETE MATERIALS. (3 Credits)
Cement hydration, supplementary cementing materials, micro to macro scale property development, mixture design and proportioning including material selection for sustainable design practices, durability aspects including freeze-thaw attack, corrosion of reinforcing steel, sulfate attack and alkali-silica reaction, recent advances in concrete technology. Recommended: CE 321 or CCE 321

CE 527. TEMPORARY CONSTRUCTION STRUCTURES. (4 Credits)
Design and construction of temporary structures including formwork, shoring, and earth retaining structures. Recommended: (CE 321 or CCE 321) and (FE 315 or CE 372) and (CE 383 or CE 383)

CE 528. PROJECT MANAGEMENT FOR CIVIL ENGINEERS. (4 Credits)
Provides the prospective civil engineer with the technical knowledge and familiarity necessary to successfully and confidently manage projects of different sizes and complexity levels. It relies on basic knowledge and techniques developed by the Project Management Institute (PMI) and real-world examples (through lectures, example projects, case studies, and guest speakers) from the public and private sectors.

CE 530. SELECTED TOPICS IN STRUCTURAL ANALYSIS AND MECHANICS. (3 Credits)
A critical, in-depth examination of topics selected by the instructor from among topics not covered in other structural analysis and mechanics courses.
Prerequisites: CE 585 with C or better
This course is repeatable for 16 credits.

CE 531. STRUCTURAL MECHANICS. (3 Credits)
Theories of failure, multi-axial stress conditions, torsion, shear distortions, energy methods of analysis, beams on elastic foundations. Nonlinear and inelastic behavior.

CE 532. FINITE ELEMENT ANALYSIS. (4 Credits)
Applications of the finite element method to structural analysis, fluid flow and elasticity problems. Use and development of large finite element computer programs.
Prerequisites: CE 585 with C or better or ME 520 with C or better

CE 533. STRUCTURAL STABILITY. (3 Credits)
Stability theory and applications, with emphasis on design of steel structures.
Recommended: CE 383
CE 534. STRUCTURAL DYNAMICS. (4 Credits)
Analytical and numerical solutions for single, multi-degree of freedom and continuous vibrating systems. Behavior of structures, dynamic forces and support motions. Seismic response spectra analysis.
Recommended: CE 382

CE 535. INTRODUCTION TO RANDOM VIBRATIONS. (4 Credits)
Introduction to probability theory and stochastic processes. Correlation and spectral density functions. Response of linear systems to random excitations. First excursion and fatigue failures. Applications in structural and mechanical system analysis and design.
Prerequisites: CE 534 with C or better or ME 522 with C or better

CE 536. MATRIX METHODS OF STRUCTURAL ANALYSIS. (4 Credits)
Recommended: CE 382 with a minimum grade of C

CE 537. NONLINEAR STRUCTURAL ANALYSIS. (4 Credits)
Prerequisites: CE 585 with C or better

CE 538. STRUCTURAL RELIABILITY AND RISK ANALYSIS. (4 Credits)
Application of probability and statistics in the reliability-based analysis and design of civil and mechanical engineering systems. Probabilistic modeling of loading and resistance including load and resistance factor design. Introduction to risk analysis and robustness.
Prerequisites: (CE 536 with C or better or ME 520 with C or better)
Recommended: ST 314

CE 540. SPECIAL TOPICS IN HYDRAULIC ENGINEERING. (3-4 Credits)
Introduction to the tools and methods employed to characterize hydrologic properties of subsurface systems. Hands-on use of GPR, TDR, resistivity, and methods of determining hydraulic conductivity, sorptivity, bulk density, and other fundamental hydrologic properties. This course is repeatable for 16 credits.

CE 543. APPLIED HYDROLOGY. (4 Credits)
Advanced treatment of hydrology covering major components of the hydrological cycle with special emphasis on surface water; hydrologic analysis and design of water resource systems; runoff prediction; and simulation of surface water systems. Offered alternate years.
Recommended: BEE 512 and CE 412

CE 544. OPEN CHANNEL FLOW. (3 Credits)
Steady, uniform, and nonuniform flow in natural and artificial open channels; unsteady flow; interaction of flow with river structures; and computational methods.
Equivalent to: BEE 544
Recommended: (CE 311 and CE 313) or CE 547

CE 547. WATER RESOURCES ENGINEERING I: PRINCIPLES OF FLUID MECHANICS. (4 Credits)
Fluid mechanics for water resources engineers, classifications of fluid flows; fluid statics and dynamics, incompressible viscous flows; dimensional analysis; applications to fluid machinery, flow through porous media, fluid motion in rivers, lakes, oceans.

CE 548. WATER QUALITY DYNAMICS. (3 Credits)
Mass balance, advection and diffusion in streams, lakes and estuaries; thermal pollution, heat balance, oxygen balance, and eutrophication; mathematical models; and numerical solutions.

CE 551. COMPUTER-AIDED SITE AND ROAD DESIGN. (4 Credits)
Site development and road design principles and application to a comprehensive design project using computer-based digital terrain model software tools. Lec/lab/rec.
Recommended: Completion or concurrent enrollment in CE 392

CE 552. ISOLATED SIGNALIZED INTERSECTIONS. (3 Credits)
Relationships between signal display, user response, vehicle detection, and signal timing parameters are examined in detail. Traffic simulation is introduced to visualize and design the various elements of isolated signalized intersections.
Recommended: CE 595

CE 553. RAILROAD ENGINEERING. (3 Credits)
The principal subject of this course is the railway infra-structure and operational issues related to high speed passenger rail and freight rail (class 1 and regional rail). The course will cover the techniques used to design, construct, monitor and maintain railway track. Class will include field trips.
Corequisites: CE 392

CE 554. DRIVING SIMULATION. (3 Credits)
Relationships between the functional elements of driving simulation (simulation computer processing, sensory feedback generation, sensory display devices, and the human operator) are examined in detail. The role of driving simulation in transportation engineering research and practice is also considered in depth. Students will design experiments, analyze and interpret data, and extrapolate simulator results to real-world scenarios.
Recommended: CE 595

CE 556. TRANSPORTATION SAFETY ANALYSIS. (3 Credits)
Provides students with a general knowledge of major transportation safety issues and a general background in the application of various statistical and econometric safety analysis techniques. In addition, this course presents a number of model-estimation methods used in transportation safety data analysis, and other subject areas that deal with safety analysis.
Recommended: CE 392 with a minimum grade of C and ST 511

CE 557. NETWORK FLOW ANALYSIS AND OPTIMIZATION. (3 Credits)
Acquaints students with the basic elements of operations research through transportation networks, optimal paths in transportation networks, vehicle routing and scheduling problems on networks, facility location problems, transportation network design problems, transportation network flows, and to indicate the directions for future research in this area. Although the course utilizes examples from transportation, the techniques and models are generalizable to other areas of engineering, e.g., water networks, computer networks, energy networks, agricultural, power, telecommunication, etc.
Recommended: CE 392 with a minimum grade of C

CE 560. SELECTED TOPICS IN GEOMATICS ENGINEERING. (0-4 Credits)
Selected topics on contemporary problems in geomatics engineering; application of ongoing research from resident and visiting faculty.
This course is repeatable for 16 credits.

CE 561. PHOTOGRAMMETRY. (3 Credits)
Geometry of terrestrial and vertical photographs, flightline planning, stereoscopy and parallax, stereoscopic plotting instruments, analytical photogrammetry, orthophotography, introduction to photo interpretation, and aerial cameras.
Recommended: CE 361 or CEM 263 or FE 208
CE 562. DIGITAL TERRAIN MODELING. (4 Credits)
Fundamentals of LiDAR and creating digital terrain models. Computational geometry, Delaunay triangulations, spline interpolations, statistical gridding methods, ground filtering, data optimizations, and advanced topics in 3D modeling.
Recommended: CE 361 or CEM 263 or equivalent surveying or GIS course.

CE 563. CONTROL SURVEYING. (4 Credits)
Global Positioning Systems (GPS) theory, networks, and fieldwork; control specifications, methods and problems in obtaining large area measurements; precise leveling; network adjustments using least square techniques; field instrument adjustments.
Recommended: CE 361 or CEM 263 or FE 208

CE 564. GLOBAL NAVIGATION SATELLITE SYSTEM. (4 Credits)
Theories and applications of surveying using satellites, focusing on the use of Global Navigation Satellite System (GNSS). The course will begin with the comprehensive overviews of the GNSS, reference and time systems as well as basic orbital mechanics. A description of the satellite signals and the data collected by GNSS receivers will also be covered. Different positioning and navigation techniques for using GNSS data (absolute/relative positioning, static/kinematic positioning, stand-alone/network based positioning) and different user applications will be reviewed, followed by practices of data collections and processing techniques.
Recommended: CE 361 or CE 202

CE 565. OREGON LAND SURVEY LAW. (3 Credits)
Introduction to U.S. public land survey; Oregon state statutes, common law decisions, and administrative rules dealing with boundary law; case studies; unwritten land transfers; original and resurveyplatting laws; guarantees of title; deed descriptions.
Recommended: CE 361 or CEM 263 or FE 208

CE 566. 3D LASER SCANNING AND IMAGING. (4 Credits)
Fundamentals of lidar acquisition, registration, processing, modeling, analysis, and verification. Use of sensor platforms for 3D acquisition. Effective data management procedures. Introduction to other imaging techniques including structure from motion and structured light. Lec/lab.

CE 567. COASTAL REMOTE SENSING. (4 Credits)
Application of remote sensing technologies (e.g., unmanned aircraft systems, multi- and hyperspectral imagery, high-resolution commercial satellite imagery, synthetic-aperture radar, and topographic and bathymetric lidar) to coastal mapping and charting, coastal engineering and coastal zone management. Both the theory and applications of advanced remote sensing technologies are covered. Lec/lab.
Recommended: An undergraduate surveying course, such as CE 361, CEM 263 or FE 208 and some exposure to MATLAB

CE 568. LEAST SQUARES ADJUSTMENTS. (3 Credits)
Examines the theory of random error and statistical testing. Discusses the propagation of error in both indirect observations and direct observations from survey. Studies weights of observations and the principles of least squares. Explains how to adjust redundant observations in level nets, horizontal surveys, GNSS networks, and GNSS and terrestrial survey networks by least squares. Estimates the error ellipses of the adjusted observations. Evaluates methods for performing coordinate transformations.
Recommended: CE 361 or CEM 263 or FE 208

CE 569. PROPERTY SURVEYS. (3 Credits)
U.S. public land survey, restoration of corners, subdivision of sections; topographic mapping; subdivision and partition plats, resurvey plats, subdivision design; introduction to LIS/GIS; field astronomy.
Recommended: CE 361 and CEM 263 or FE 208

CE 570. GEOTECHNICAL SPECIAL TOPICS. (1-16 Credits)
Development and management of actual projects through the examination of case histories; evaluation of geotechnical data; development of design recommendations and preparation of project reports.
This course is repeatable for 16 credits.

CE 571. ADVANCED FOUNDATION ENGINEERING. (4 Credits)
Presents the planning, analysis, and design of shallow and deep foundations from the geotechnical engineering perspective. Topics supporting course objectives include planning and execution of subsurface investigations, interpretation of in-situ tests, analysis and design of deep and shallow foundations, including geotechnical capacity, and immediate settlement. Assessment of deep foundation installation, axial and lateral loading tests, and group effects is presented. Evaluation of foundation performance is conducted under deterministic and probabilistic frameworks.
Recommended: CE 373 and CE 471

CE 572. ADVANCED GEOTECHNICAL LABORATORY. (4 Credits)
Examination of soil composition and engineering properties of soils including volume change, pore pressure generation, strength, and deformation behavior of soils in the laboratory. Advanced static and cyclic shear strength testing of soils will also be discussed. Lec/lab.
Recommended: CE 373 and CE 471

CE 574. ENGINEERING PROPERTIES OF SOILS. (5 Credits)
Advanced laboratory experimental methods for measurement of soil properties. Analysis of experimental data, and methods to display data for 2D and 3D experiments. Compositional and environmental factors affecting the stress-strain, volume change, compressibility, shear strength behavior of sand, clay, and compacted soils in 2D and 3D. Stress and strain invariants and modeling of failure criteria.
Recommended: CE 471

CE 575. EARTH RETENTION AND SUPPORT. (4 Credits)
Presents the theory and practice of design and construction of earth retaining structures. Topics include rigid and flexible retaining structures, ranging from gravity and cantilever systems, cantilever and anchored sheet piling, tied-back shore elements, soil nailing, and mechanically stabilized earth walls. These topics are developed with a view on compaction stresses and surface loading, and invokes approaches that range from the static equations of equilibrium to empirical rules of thumb.
Recommended: CE 373

CE 576. GROUND IMPROVEMENT. (3 Credits)
Presents the analysis and design of ground improvement techniques. Topics supporting course objectives include design for accelerated settlement (surchage design) with and without pre-fabricated vertical drains, vibro-compaction, vibro-replacement (stone columns) and aggregate piers, deep soil mixing, jet grouting, EPS geofoam, and other improvement techniques for improving soil strength and stability, and limiting deformations and the effects of liquefaction.
Prerequisites: CE 572 with C or better and CE 577 [C]
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Recommended Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 577</td>
<td>Static and Dynamic Soil Behavior</td>
<td>3</td>
<td>-</td>
<td>CE 372 and CE 373</td>
</tr>
<tr>
<td>CE 578</td>
<td>Geotechnical Earthquake Engineering</td>
<td>4</td>
<td>-</td>
<td>CE 373 and CE 471</td>
</tr>
<tr>
<td>CE 579</td>
<td>Slope and Embankment Design</td>
<td>3</td>
<td>-</td>
<td>CE 382</td>
</tr>
<tr>
<td>CE 580</td>
<td>Selected Topics in Structural Design</td>
<td>3</td>
<td>-</td>
<td>CE 581</td>
</tr>
<tr>
<td>CE 581</td>
<td>Reinforced Concrete I</td>
<td>4</td>
<td>-</td>
<td>CE 583 and CE 581</td>
</tr>
<tr>
<td>CE 582</td>
<td>Masonry Design</td>
<td>3</td>
<td>-</td>
<td>CE 584</td>
</tr>
<tr>
<td>CE 583</td>
<td>Bridge Design</td>
<td>3</td>
<td>-</td>
<td>CE 382 and CE 481</td>
</tr>
<tr>
<td>CE 584</td>
<td>Wood Design</td>
<td>4</td>
<td>-</td>
<td>CE 381</td>
</tr>
<tr>
<td>CE 585</td>
<td>Prestressed Concrete</td>
<td>3</td>
<td>-</td>
<td>CE 589 and CE 581</td>
</tr>
<tr>
<td>CE 590</td>
<td>Selected Topics in Transportation Engineering</td>
<td>1-3</td>
<td>-</td>
<td>CE 491 for new graduate students</td>
</tr>
<tr>
<td>CE 591</td>
<td>Transportation Systems Analysis, Planning, and Policy</td>
<td>3</td>
<td>-</td>
<td>CE 492</td>
</tr>
<tr>
<td>CE 592</td>
<td>Pavement Structures</td>
<td>3</td>
<td>-</td>
<td>CE 493</td>
</tr>
<tr>
<td>CE 593</td>
<td>Traffic Flow Analysis and Control</td>
<td>4</td>
<td>-</td>
<td>CE 494 and CE 495</td>
</tr>
<tr>
<td>CE 594</td>
<td>Transport Facility Design</td>
<td>3</td>
<td>-</td>
<td>CE 496 and CE 497</td>
</tr>
<tr>
<td>CE 595</td>
<td>Traffic Operations and Design</td>
<td>3</td>
<td>-</td>
<td>CE 498 and CE 499</td>
</tr>
<tr>
<td>CE 596</td>
<td>Pavement Evaluation and Management</td>
<td>3</td>
<td>-</td>
<td>CE 500 and CE 501</td>
</tr>
<tr>
<td>CE 597</td>
<td>Public Transportation</td>
<td>3</td>
<td>-</td>
<td>CE 502 and CE 503</td>
</tr>
<tr>
<td>CE 598</td>
<td>Airport Planning and Design</td>
<td>3</td>
<td>-</td>
<td>CE 504 and CE 505</td>
</tr>
<tr>
<td>CE 599</td>
<td>Intelligent Transportation Systems</td>
<td>3</td>
<td>-</td>
<td>CE 506 and CE 507</td>
</tr>
<tr>
<td>CE 601</td>
<td>Research</td>
<td>1-16</td>
<td>-</td>
<td>CE 491 for new graduate students</td>
</tr>
<tr>
<td>CE 603</td>
<td>Thesis</td>
<td>1-16</td>
<td>-</td>
<td>CE 491 for new graduate students</td>
</tr>
</tbody>
</table>

This course is repeatable for 16, 9 credits.
CE 605. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

CE 606. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

CE 607. OCEAN ENGINEERING SEMINAR. (1 Credit)
Presentations from on-campus and off-campus speakers discussing state of technology topics in ocean engineering research, development, and construction. Graded P/N.
This course is repeatable for 16 credits.

CE 630. OCEAN WAVE MECHANICS I. (3 Credits)
Linear wave boundary value problem formulation and solution, water particle kinematics, shoaling, refraction, diffraction, and reflection. Linear long wave theory with applications to tides, seiching, and storm surge. Course listed as OC 630.
Equivalent to: OC 630

CE 631. OCEAN WAVE MECHANICS II. (3 Credits)
Second in the sequence of ocean wave engineering mechanics, covers the following topics: introduction to long wave theory, wave superposition, wave height distribution, and the wind-wave spectrum, introduction to wave forces, and basic nonlinear properties of water waves. May include additional selected topic in wave mechanics. Course listed as OC 631.
Prerequisites: CE 630 with C or better or OC 630 with C or better
Equivalent to: OC 631

CE 634. LONG WAVE MECHANICS. (3 Credits)
Theory of long waves. Depth-integrated Euler’s equation and its jump conditions. Evolution equations and their solutions. Nonlinear shallow-water waves, the Korteweg-deVries equation and Boussinesq equation. Boundary-layer effects. Shallow-water waves on beaches. Applications of the fundamentals to problems of tsunamis. Crosslisted as OC 634.
Prerequisites: (CE 630 with C or better and CE 631 [C])
Equivalent to: OC 634

CE 635. APPLIED MODELING OF NEARSHORE PROCESSES. (4 Credits)
An introduction to numerical modeling of the nearshore ocean, providing hands-on experience with state-of-the-art numerical models for wave propagation, nearshore circulation, planform shoreline evolution and bathymetric profile evolution. The focus is on review of model requirements, detailed study of several specific models for several domains of interest, application to coastal phenomena, and the interpretation of model results. Offered alternate years. Crosslisted as OC 635.
Equivalent to: OC 635

CE 639. DYNAMICS OF OCEAN STRUCTURES. (3 Credits)
Dynamic response of fixed and compliant structures to wind, wave and current loading, Morison equation and diffraction theory for wave and current load modeling, time and frequency domain solution methods; application of spectral and time series analyses; system parameter identification; and stochastic analysis of fatigue and response to extreme loads. Offered alternate years.

CE 640. SELECTED TOPICS IN OCEAN AND COASTAL ENGINEERING. (1-3 Credits)
Selected topics on contemporary problems in ocean and coastal engineering; application of ongoing research from resident and visiting faculty. Offered alternate years.
This course is repeatable for 9 credits.

CE 642. RANDOM WAVE MECHANICS. (3 Credits)
Random wave theories, probability and statistics of random waves and wave forces, time series analyses of stochastic processes, ocean wave spectra. Offered alternate years.
Prerequisites: CE 630 with C or better

CE 643. COASTAL ENGINEERING. (3 Credits)
Coastal sediment transport including nearshore currents, longshore onshore-offshore transport, and shoreline configuration; equilibrium beach profile concept with application to shore protection; shoreline modeling; tidal inlet hydrodynamics and inlet stabilization; design criteria for soft structures. Offered alternate years.
Prerequisites: CE 630 with C or better

CE 645. WAVE FORCES ON STRUCTURES. (3 Credits)
Wave forces on small and large members, dimensional analyses and scaling of equations, identification and selection of force coefficients for Morison equation; compatibility of wave kinematics and force coefficients in Morison equation, diffraction and radiation of surface gravity waves by large floating bodies, wavemaker problem, and reciprocity relations.
Prerequisites: CE 630 with C or better

CE 647. OCEAN AND COASTAL ENGINEERING MEASUREMENTS. (3 Credits)
Hands-on experience in the conduct of field and laboratory observations, including waves, currents, wind, tides, tsunami, sediments, bathymetry, shore profiles, wave forces on structures, and structural response. Online data archival and retrieval systems.
Prerequisites: CE 630 with C or better

CE 661. KINEMATIC POSITIONING AND NAVIGATION. (3 Credits)
Application of Global Navigation Satellite System (GNSS) aided Inertial Navigation Systems (INS) to directly georeference survey data acquired from a moving platform, such as an unmanned aircraft system (UAS), conventional aircraft, survey boat, or all-terrain vehicle. Topics include 3D coordinate transformations, dead-reckoning, inertial navigation, kinematic GNSS, Kalman filtering, and sensor modeling.
Recommended: Undergraduate surveying course, such as CE 361, CE 263 or FE 208, and some exposure to MATLAB

CE 663. GEODESY. (4 Credits)
Covers the geometrical aspects of terrestrial and celestial reference systems as well as modern realizations of these coordinate systems. In addition, an introductory level of the physical geodesy is also included, such as gravitational and gravity fields in order to deal with the geoid and heights. From this course, students are expected to understand the core elements of geometric and physical earth, which will assist them to have a solid background for other geospatial related studies.

Recommended: CE 202 or CE 361

CE 808. WORKSHOP. (1-16 Credits)
This course is repeatable for 16 credits.