BIOLOGICAL & ECOLOGICAL ENGR (BEE)

BEE 101. ECOLOGICAL ENGINEERING I. (3 Credits)
Introduction to engineering at OSU and the emerging field of ecological engineering. Topics include engineering analysis and problem solving, professional ethics, the design process and teamwork.

BEE 102. ECOLOGICAL ENGINEERING II. (3 Credits)
Introduction to common problems and solutions in ecological engineering, emphasizing the multiplicity of approaches to constraining, analyzing, and resolving challenges of ecosystem management. Two overnight field trips to local ecological monitoring and engineering sites will be required.

BEE 199. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 221. FUNDAMENTALS OF ECOLOGICAL ENGINEERING. (3 Credits)
Introduction to the concepts and practice of ecological engineering including characteristics, classification, and modeling of ecosystems; ecosystem protection; and sustainable uses of ecosystems, including treatment wetlands, land treatment systems, and ecologically sensitive stormwater management, to meet the needs of human societies.
Prerequisites: (BI 211 with C or better or BI 211H with C or better) and (MTH 256 [C] or MTH 256H [C])

BEE 222. ECOLOGICAL ENGINEERING COMPUTATION. (3 Credits)
Programming methods relevant to ecological engineering, including hardware/software integration.

BEE 299. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 311. ECOLOGICAL FLUID MECHANICS. (4 Credits)
Fluid properties, fluid statics, fluid motion, conservation of mass, momentum and energy for incompressible fluids, dimensional analysis, ecological engineering applications. Lec/rec.

BEE 312. ECODYNAMICS. (4 Credits)
Theory and design of hydraulic systems for ecological engineering applications. Lec/rec.
Prerequisites: BEE 311 with C or better or CE 311 with C or better or CHE 331 with C or better or CHE 331H with C or better

BEE 313. ECOHYDROLOGY. (4 Credits)
Provides quantitative description of fundamental hydrologic processes and the hydrologic cycle, the interactions of water between atmosphere, soils, and plants, and models for estimating the generation and transport of water in the environment. Lec/rec.
Prerequisites: BEE 312 with C or better

BEE 320. BIOSYSTEMS ANALYSIS AND MODELING. (4 Credits)
An introduction to simulation modeling and analysis of a variety of biological and ecological systems. Systems approaches to describing ecological systems.
Prerequisites: BEE 222 with C or better
Recommended: MTH 256

BEE 322. ECOLOGICAL ENGINEERING THERMODYNAMICS AND TRANSFER PROCESS. (4 Credits)
A study of the transport processes of fluid flow, heat transfer and mass transfer applied to biological organisms and ecological systems.
Prerequisites: BEE 320 with C or better

BEE 361. ECOLOGICAL ENGINEERING LABORATORY. (3 Credits)
Introduction to modern measurement methods for ecological and environmental applications includes sensors and systems for measuring soil, water and atmospheric properties. No final exam; field trip required. Lec/lab.

BEE 399. SPECIAL TOPICS. (0-16 Credits)
This course is repeatable for 16 credits.

BEE 401. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 405. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 407. SEMINAR. (1-16 Credits)
Departmental seminars. Graded P/N.
Equivalent to: BEE 407H
This course is repeatable for 16 credits.

BEE 407H. SEMINAR. (1-16 Credits)
Departmental seminars. Graded P/N.
Attributes: HNRS – Honors Course Designator
Equivalent to: BEE 407
This course is repeatable for 16 credits.

BEE 410. ECOLOGICAL ENGINEERING INTERNSHIP. (1-12 Credits)
Internship in ecological engineering to provide students with an opportunity to apply course work and theory to the real world. Requires internship opportunity identification by student.
This course is repeatable for 12 credits.

BEE 411. GLOBAL ENVIRONMENTAL CHANGE: USING DATA TO INFORM DECISIONS. (3 Credits)
Empowers students interested in global change research to focus on the interactions between changes in human land use and climate. Using an innovative online data and mapping tool called Data Basin, students will explore topics accessing the highest quality datasets available in an all-in-one platform.

BEE 415. PROFESSIONAL DEVELOPMENT. (1 Credit)
Preparation for student professional careers. Students will interact with and hear seminars from professionals working in the ecological engineering field to learn from their experiences.

BEE 433. IRRIGATION SYSTEM DESIGN. (4 Credits)
Principles of soil physics and plant water use applied to irrigation system design. Design of gravity, pressurized, and trickle irrigation systems, improving on-farm water management, performance characteristics of pumps and other irrigation equipment. Lec/lab. Offered alternate years.

BEE 439. IRRIGATION PRINCIPLES AND PRACTICES. (4 Credits)
Survey of irrigation systems, system configurations, factors that influence irrigation efficiency, crop water requirements, energy requirements, pumps, irrigation scheduling. For non-engineers. Lec/lab/ rec.
Prerequisites: MTH 111 with C or better

BEE 446. RIVER ENGINEERING. (4 Credits)
Multipurpose river use; natural physical processes in alluvial rivers; channel modification practices; river structures; design practices; impact of river modification; problem analysis; and impact minimization. Offered alternate years.
Recommended: CE 313
BEE 458. NONPOINT SOURCE POLLUTION ASSESSMENT AND CONTROL. (3 Credits)
Problem solving in nonpoint source pollution. Methods for evaluating the
extent, rate, timing, and fate of Non-Point Source (NPS) pollutants in
agricultural and urban environments.

BEE 468. BIOREMEDIATION ENGINEERING. (4 Credits)
Examines strategies for using a variety of biological processes for
treating municipal, agricultural and industrial pollutants. Lec/lab.

BEE 469. ECOLOGICAL ENGINEERING DESIGN I. (4 Credits)
Engineering design processes for ecological engineering applications,
including specifications, performance criteria, timelines, and project
logistics, principles and practices of working in engineering teams.
(Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisites: BEE 322 with C or better
Recommended: ENGR 391 or ENGR 391H

BEE 470. ECOLOGICAL ENGINEERING DESIGN II. (4 Credits)
Engineering design processes for ecological engineering applications,
including specifications, performance criteria, timelines, and project
logistics, principles and practices of working in engineering teams.

BEE 472. INTRODUCTION TO FOOD ENGINEERING PRINCIPLES. (5
Credits)
Fundamental engineering principles for scientists and non-process
engineers. Topics include fluid flow, mass and energy transfer, and
material and energy balances. Directed at food scientists and other
majors who need or would like a working knowledge of food engineering
principles.
Prerequisites: MTH 112 with C- or better and (MTH 227 [C-] or MTH 251
[C-] or MTH 251H [C-]) and PH 201 [C-]

BEE 473. INTRODUCTION TO FOOD ENGINEERING PROCESS DESIGN. (3
Credits)
Fundamental engineering process design principles for food scientists
and non-process engineers. Directed at those who need or would like a
working knowledge of applied food engineering process design. Lec/rec.
Recommended: BEE 472 or BEE 572

BEE 499. SPECIAL TOPICS. (0-16 Credits)
Equivalent to: BEE 499H
This course is repeatable for 16 credits.

BEE 499H. SPECIAL TOPICS. (1-16 Credits)
Attributes: HNRS – Honors Course Designator
Equivalent to: BEE 499
This course is repeatable for 16 credits.

BEE 501. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 503. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

BEE 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 506. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

BEE 507. SEMINAR. (1 Credit)
Section 1: Graduate Student Orientation Seminar to acquaint new
graduate students with graduate school and departmental requirements,
policies and expectations, and departmental research programs.
Section 2: Graduate Research Publication Seminar to expose students
to requirements for successful proposals and publication of research
results. Section 3: Oral Presentation Improvement--A highly participatory
educational effort designed to improve performance in presenting
research reports, technical papers and in responding to oral examination
questions. Graded P/N.
This course is repeatable for 99 credits.

BEE 511. GLOBAL ENVIRONMENTAL CHANGE: USING DATA TO INFORM
DECISIONS. (3 Credits)
Empowers students interested in global change research to focus on the
interactions between changes in human land use and climate. Using an
innovative online data and mapping tool called Data Basin, students will
explore topics accessing the highest quality datasets available in an all-
in-one platform.

BEE 512. PHYSICAL HYDROLOGY. (3 Credits)
Principles of hydrologic processes and the integration of these processes
into the hydrologic cycle. Topics include atmospheric processes,
precipitation and runoff, storm response in streamflow on a watershed
scale, and major concepts in groundwater systems.
Recommended: One year of calculus.

BEE 525. STOCHASTIC HYDROLOGY. (3 Credits)
Study the elements of randomness embedded in the hydrological
processes with emphasis on time series analysis, stationarity, periodic/
trend component, stochastic component, time series synthesis, ARMA
model, spatial sampling and scale variability. Offered alternate years.
Recommended: BEE 512

BEE 529. BIOSYS MODELING TECHNIQUES. (3 Credits)
Development of mathematical models of biological and ecological
systems; linear and nonlinear systems analysis, stochastic modeling and
random processes; model solution and analysis techniques.

BEE 533. IRRIGATION SYSTEM DESIGN. (4 Credits)
Principles of soil and plant water use applied to irrigation system design.
Design of gravity, pressurized, and trickle irrigation systems, improving
on-farm water management, performance characteristics of pumps and
other irrigation equipment. Lec/lab. Offered alternate years.
Recommended: ENGR 332

BEE 542. VADOSE ZONE TRANSPORT. (4 Credits)
Introduction to the physical and hydraulic properties involved in flow from
the soil surface to groundwater. Classical infiltration equations will be
derived and presented with exact and approximate solutions. Attention is
focused on application to pollutant transport and recent advances in non-
ideal flow.
Recommended: MTH 254

BEE 544. OPEN CHANNEL HYDRAULICS. (4 Credits)
Steady, uniform, and nonuniform flow in natural and artificial open
channels; unsteady flow; interaction of flow with river structures; and
computational methods. Offered alternate years.
Equivalent to: CE 544
Recommended: CE 313
BEE 545. SEDIMENT TRANSPORT. (4 Credits)
Principles of sediment erosion, transportation and deposition in rivers, reservoirs, and estuaries; measurement, analysis, and computational techniques. Offered even years in winter term. CROSSLISTED as FE 545.
Equivalent to: FE 545
Recommended: CE 313 or FE 330

BEE 546. RIVER ENGINEERING. (4 Credits)
Multipurpose river use; natural physical processes in alluvial rivers; channel modification practices; river structures; design practices; impact of river modification; problem analysis; and impact minimization. Offered alternate years.
Recommended: CE 313

BEE 549. REGIONAL HYDROLOGIC MODELING. (3 Credits)
Challenges in regional-scale water resource analysis and management with emphasis on application to production agriculture. Application of geostatistical techniques to spatially variable systems and remote sensing to large-scale water resource systems. Development of soil-water-atmosphere-plant models. Analysis of evapotranspiration estimating methods. Offered alternate years.
Recommended: BEE 512 and MTH 256

BEE 558. NONPOINT SOURCE POLLUTION ASSESSMENT AND CONTROL. (3 Credits)
Problem solving in nonpoint source pollution. Methods for evaluating the extent, rate, timing, and fate of Non-Point Source (NPS) pollutants in agricultural and urban environments.

BEE 568. BIOREMEDIATION ENGINEERING. (4 Credits)
Examines strategies for using a variety of biological processes for treating municipal, agricultural and industrial contaminants. Lec/lab.

BEE 572. INTRODUCTION TO FOOD ENGINEERING PRINCIPLES. (5 Credits)
Fundamental engineering principles for scientists and non-process engineers. Topics include fluid flow, mass and energy transfer, and material and energy balances. Directed at food scientists and other majors who need or would like a working knowledge of process engineering principles.
Recommended: MTH 112 and (MTH 227 or MTH 251 or MTH 251H) and PH 201

BEE 573. INTRODUCTION TO FOOD ENGINEERING PROCESS DESIGN. (3 Credits)
Fundamental engineering process design principles for food scientists and non-process engineers. Directed at those who need or would like a working knowledge of applied food engineering process design. Lec/rec.
Recommended: BEE 472 or BEE 572

BEE 585. METABOLIC SYSTEMS ENGINEERING. (3 Credits)
Quantitative and experimental approaches for describing and engineering biological networks and an introduction to the principles and methodologies of metabolic engineering and synthetic biology.
Recommended: Statistics, biology, biochemistry or microbiology.

BEE 586. PROBLEM SOLVING FOR METABOLIC SYSTEMS ENGINEERING. (1 Credit)
Corequisites: BEE 585
Recommended: MTH 251 and MTH 252

BEE 599. SPECIAL TOPICS. (0-16 Credits)
This course is repeatable for 16 credits.