MICROBIOLOGY

The Department of Microbiology is part of the School of Life Sciences.

Microbiology is concerned with the forms and activities of bacteria, archaea, fungi, protozoa, and viruses. It plays varied roles in the practical applications of technology and medicine, as well as in the most theoretical problems of biology. Microbiologists are involved in activities as different as the study of gene structure, the control of disease, and the industrial processes based on the ability of microorganisms to decompose and synthesize complex organic molecules. Microbiology is one of the most rewarding of professions because it provides the opportunity to be in contact with all the other natural sciences and thus to contribute in many different ways to the betterment of life.

Undergraduate Studies in Microbiology

Many fields of microbiology are available to students and research workers. These include fundamental areas such as the physiology, ecology, and genetics of microorganisms; and the applications of microbiology concerned with soil and water quality, food safety, immunology, and human, animal and plant diseases. Undergraduate studies prepare students for admission to professional schools, graduate programs in microbiology, and for positions in education and as health officers, sanitarians and biotechnicians in private industry, state and federal government.

High school students or community college transferees considering a career in microbiology will find it helpful to have a strong background in mathematics and chemistry. An excellent advising program is available to undergraduates, and prospective students are encouraged to consult with a departmental advisor or with faculty members working in an area of interest to them. Upper-division students are also encouraged to carry out a research project in the laboratory of a faculty member and/or to serve as an undergraduate teaching assistant. Several partial scholarships are available for microbiology majors. For more information, contact a microbiology advisor.

Undergraduate Studies in BioHealth Sciences

Specialized programs are offered to students who wish to pursue careers in health-related fields. Such programs provide excellent academic preparation for students who plan to enter medical, pharmacy, or dental school, and for those choosing careers in physician assistant, physical therapy, optometry, clinical laboratory science, and podiatry. The curricula of the BioHealth Sciences major and accompanying options generally fulfill requirements at the respective professional schools. Because specific requirements vary from school to school, it is the student’s responsibility to check requirements for any school to which the student plans to apply.

Graduate Programs

The Department of Microbiology offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees. Major fields of study in the program include molecular biology, microbial physiology, genetics, virology, soil and aquatic microbiology, immunology, pathogenic microbiology, and microbial genomes. The department also participates in the Master of Arts in Interdisciplinary Studies program. Students in both the master’s and PhD programs are required to complete a research project leading to a thesis. Students pursuing the PhD degree must complete both written and oral qualifying examinations. Teaching and research assistantships are available.

For additional information, contact the department head or other faculty members conducting research in areas that are of interest.

Undergraduate Programs

Major

 Pre-professional Options in Health Sciences

 - Pre-Clinical Laboratory Science
 - Pre-Dentistry
 - Pre-Medicine/Pre-Podiatry
 - Pre-Optometry
 - Pre-Pharmacy
 - Pre-Physical Therapy
 - Pre-Physician Assistant

- Microbiology (http://catalog.oregonstate.edu/college-departments/science/school-life-sciences/microbiology/microbiology-bs-hbs)

 Option

 - Aquatic Microbiology
 - Pre-Medicine/Microbiology

Minor

- Microbiology (http://catalog.oregonstate.edu/college-departments/science/school-life-sciences/microbiology/microbiology-minor)

Graduate Programs

Major

- Microbiology (http://catalog.oregonstate.edu/college-departments/science/school-life-sciences/microbiology/microbiology-ma-ms-phd)

Minor

- Microbiology (http://catalog.oregonstate.edu/college-departments/science/school-life-sciences/microbiology/microbiology-minor)

Faculty

Professors Bartholomew, Bermudez, Dreher, Field, Giovannoni, Kent, Ream, Sarker, Schuster, Trempey

Emeritus Faculty Bottomley, Geller, Rohrmann

Associate Professors Vega-Thurber, Halsey, Mueller

Assistant Professors David, Lowry, Sharpton

Senior Instructor/Advisor Bruslind

Jerri Bartholomew, Head
226 Nash Hall
Oregon State University
Corvallis, OR 97331-3804
541-737-4441
Email: bartholj@science.oregonstate.edu
Website: http://microbiology.science.oregonstate.edu/

Advising:
Microbiology: 226 Nash Hall, 541-737-4441
BioHealth Sciences: 225 Nash Hall, 541-737-3875
Biohealth Sciences

BHS 107. HEALTH PROFESSIONS: DENTAL. (1 Credit)
Discussion of matters relating to a dental career. Includes application procedures, the importance of various requirements, admissions, professional school curricula, financing education and related matters. Speakers are included. Graded P/N.

BHS 110. BIOHEALTH SCIENCES ORIENTATION. (1 Credit)
Introduction of incoming BioHealth Sciences students to college life with an emphasis on faculties, facilities, services, and curricula in BHS. Exposure to career opportunities for students interested in the BioHealth Sciences. Graded P/N.

BHS 199. SPECIAL TOPICS. (1-16 Credits)
Graded P/N.
Equivalent to: GS 199
This course is repeatable for 16 credits.

BHS 255. *ALLIED HEALTH MICROBIOLOGY. (4 Credits)
General properties of cellular microbes and viruses, microbial biochemistry and genetics, pathogenesis and disease, immunity, and microbial infections. Lecture and lab emphasis is on medical microbiology, infectious diseases, and public health. Not intended for biological sciences majors. Lec/lab. CROSSTLISTED as MB 255.
Attributes: CBPS – Core, Pers, Biological Science

BHS 316. PRINCIPLES OF IMMUNOLOGY. (3 Credits)
Interactions of the innate and adaptive immune responses in the context of infectious diseases, autoimmune diseases, immunodeficiencies and immunotherapies. This course is designed for non-microbiology majors.
Prerequisites: MB 230 with C- or better or ((BI 212 with C- or better or BI 212H with C- or better) and (BI 213 [C-] or BI 213H [C-]) or (BI 204 [C-] and BI 205 [C-])

BHS 323. *MICROBIAL INFLUENCES ON HUMAN HEALTH. (3 Credits)
How microorganisms contribute in beneficial and detrimental ways to human health. Emphasis on microbial contributions to cancer, gut health, chronic infection and autoimmune diseases. This course is part of the Writing Intensive Curriculum for the BioHealth Sciences major. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisites: MB 302 with D- or better or BI 314 with D- or better or BB 450 with D- or better

BHS 329. MECHANISMS OF DISEASE: INTRODUCTION TO GENERAL PATHOLOGY. (3 Credits)
An introduction to basic principles of disease, focused on structural and functional changes of cells, tissues and organs, and their relationships to clinical disease. The emphasis of the course is at the cellular to organ level, but will cover some on molecular mechanisms as pertinent.
Prerequisites: (BI 211 with D- or better or BI 211H with D- or better) and (BI 212 [D-] or BI 212H [D-])

BHS 340. HUMAN VIROLOGY. (4 Credits)
Properties of viruses, their biology, pathogenesis and concern to society.
Emphasis on viruses causing human disease. CROSSTLISTED as MB 340.
Prerequisites: (BI 204 with C- or better and BI 205 [C-] and BI 206 [C-]) or (BI 211 [C-] and BI 212 [C-] and BI 213 [C-])
Equivalent to: MB 340

BHS 401. RESEARCH. (1-16 Credits)
Equivalent to: GS 401
This course is repeatable for 16 credits.

BHS 403. THESIS. (1-16 Credits)
Equivalent to: GS 403
This course is repeatable for 16 credits.

BHS 405. READING AND CONFERENCE. (1-16 Credits)
Equivalent to: GS 405
This course is repeatable for 16 credits.

BHS 406. PROJECTS. (1-16 Credits)
Graded P/N.
Equivalent to: GS 406
This course is repeatable for 16 credits.

BHS 407. SEMINAR. (1-16 Credits)
Graded P/N.
Equivalent to: GS 407
This course is repeatable for 16 credits.

BHS 410. SCIENCE INTERNSHIP. (1-12 Credits)
Supervised scientific work experience at selected cooperating institutions, agencies, laboratories, or companies. Graded P/N.
Equivalent to: GS 410
This course is repeatable for 12 credits.

BHS 499. SPECIAL TOPICS. (1-16 Credits)
Graded P/N.
This course is repeatable for 16 credits.

General Science Courses

GS 199. SPECIAL STUDIES. (1-16 Credits)
Equivalent to: BHS 199
This course is repeatable for 16 credits.

GS 399. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

GS 401. RESEARCH. (1-16 Credits)
Equivalent to: BHS 401
This course is repeatable for 16 credits.

GS 403. THESIS. (1-16 Credits)
Equivalent to: BHS 403
This course is repeatable for 16 credits.

GS 405. READING AND CONFERENCE. (1-16 Credits)
Equivalent to: BHS 405
This course is repeatable for 16 credits.

GS 407. SEMINAR. (1-16 Credits)
One-credit sections. Graded P/N.
Equivalent to: BHS 407
This course is repeatable for 16 credits.

GS 410. SCIENCE INTERNSHIP. (1-12 Credits)
Supervised scientific work experience at selected cooperating institutions, agencies, laboratories, or companies. Graded P/N.
Equivalent to: BHS 410
This course is repeatable for 12 credits.

Microbiology

MB 110. ORIENTATION TO MICROBIOLOGY. (1 Credit)
Introduction of incoming microbiology students to college life with an emphasis on faculties, facilities, services, and curricula in microbiology. Exposure to career opportunities in microbiology. Graded P/N.
MB 201. LABORATORY SKILLS. (1-16 Credits)
These credits are designed for students who are doing experiential learning in a research laboratory on campus, performing basic laboratory tasks that are not elevated to the level of an independent research project. Graded P/N.
This course is repeatable for 16 credits.

MB 230. *INTRODUCTORY MICROBIOLOGY. (4 Credits)
Microbiology as it affects our everyday lives. The impact of microorganisms on health, food/water sanitation, environment, industry, and genetic engineering. Lec/lab. (Bacc Core Course)
Attributes: CPBS – Core, Pers, Biological Science
Equivalent to: MB 230H

MB 230H. *INTRODUCTORY MICROBIOLOGY. (4 Credits)
Microbiology as it affects our everyday lives. The impact of microorganisms on health, food/water sanitation, environment, industry, and genetic engineering. Lec/lab. (Bacc Core Course)
Attributes: CPBS – Core, Pers, Biological Science; HNRS – Honors Course Designator
Equivalent to: MB 230

MB 255. *ALLIED HEALTH MICROBIOLOGY. (4 Credits)
General properties of cellular microbes and viruses, microbial biochemistry and genetics, pathogenesis and disease, immunity, and microbial infections. Lecture and lab emphasis is on medical microbiology, infectious diseases, and public health. Not intended for biological sciences majors. Lec/lab. CROSSLISTED as BHS 255.
Attributes: CPBS – Core, Pers, Biological Science

MB 299. SPECIAL TOPICS. (1-16 Credits)
May be repeated for credit when topic varies.
Equivalent to: MB 299H
This course is repeatable for 16 credits.

MB 299H. SPECIAL TOPICS. (1-16 Credits)
May be repeated for credit when topic varies.
Attributes: HNRS – Honors Course Designator
Equivalent to: MB 299
This course is repeatable for 16 credits.

MB 302. GENERAL MICROBIOLOGY. (3 Credits)
Emphasis on cytology, physiology, virology, growth and control of growth with coverage of the role of microorganisms in nature, in disease, and as useful tools.
Prerequisites: (CH 332 with C- or better or CH 335 with C- or better) and (((BI 212 with C- or better or BI 212H with C- or better) and (BI 213 [C-] or BI 213H [C-])) or (BI 204 [C-] and BI 205 [C-] and BI 206 [C-]))

MB 303. GENERAL MICROBIOLOGY LABORATORY. (2 Credits)
Development of laboratory techniques; exercises designed to reinforce concepts covered in MB 302. MB 302 is a prereq that may be taken prior to or concurrently with MB 303. Lec/lab.
Prerequisites: MB 302 (may be taken concurrently) with D- or better

MB 310. BACTERIAL MOLECULAR GENETICS. (3 Credits)
Introductory concepts of bacterial molecular genetics. Topics include DNA replication, mutation, DNA repair, DNA recombination, transposons, bacteriophages, genetic manipulation, and gene regulation.
Prerequisites: MB 302 with D- or better and (BI 314 [D-] or BI 314H [D-] or BB 314 [D-]) and (BB 450 [D-] or BB 490 [D-]) and (BB 451 (may be taken concurrently) [D-] or BB 491 (may be taken concurrently) [D-])

MB 311. *MOLECULAR MICROBIOLOGY LAB: A WRITING INTENSIVE COURSE. (3 Credits)
Scientific writing, laboratory notebook composition, experimental design, and laboratory experiments in bacterial molecular biology. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisites: (MB 303 with D- or better or MB 303H with D- or better) and MB 310 (may be taken concurrently) [D-]

MB 312. BACTERIAL PHYSIOLOGY AND METABOLISM. (3 Credits)
Molecular structure and function, macromolecular assembly, energy production and use, and cellular growth.
Prerequisites: MB 310 with D- or better and BB 451 [D-]

MB 314. AQUATIC MICROBIOLOGY. (3 Credits)
A survey of the diversity, ecology, and physiology of microbes in aquatic systems, with emphasis on their roles in food webs, chemical cycling, and human health. Provides the background knowledge and quantitative/analytical skills necessary to interpret and critique current and historical research in the fields of general aquatic microbiology.
Prerequisites: (CH 231 with D- or better or CH 231H with D- or better or CH 121 with D- or better) and (CH 232 [D-] or CH 232H [D-] or CH 122 [D-]) and (CH 233 [D-] or CH 233H [D-] or CH 123 [D-])

MB 330. *DISEASE AND SOCIETY. (3 Credits)
Infectious disease has many effects on the development of society, and likewise, human interactions affect the development of disease. The course examines these interactions with a focus on the role of race, class, and economic status in the development of epidemics. (Bacc Core Course)
Attributes: CPDP – Core, Perspective, Difference/Power/Discrimination

MB 340. INTRODUCTORY VIROLOGY. (4 Credits)
Properties of viruses, their biology, pathogenesis and concern to society. Emphasis on viruses causing human disease. CROSSLISTED as BHS 340.
Prerequisites: (BI 204 with C- or better and BI 205 [C-] and BI 206 [C-]) or (BI 211 [C-] and BI 212 [C-] and BI 213 [C-])
Equivalent to: BHS 340

MB 385. *EMERGING INFECTIOUS DISEASES AND EPIDEMICS. (3 Credits)
Emerging and reemerging infectious disease is a contemporary global issue of great concern. To understand and evaluate the issue, the course covers germ theory, disease history and ecology, microbial pathogenesis and the immune response, historic plagues, and the issue of great concern. To understand and evaluate the issue, the course covers germ theory, disease history and ecology, microbial pathogenesis and the immune response, historic plagues, and the biological, environmental, population and social changes that contribute to disease emergence. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisites: (BI 211 with D- or better or BI 211H with D- or better) and (BI 212 [D-] or BI 212H [D-] and BI 213 [D-] or BI 213H [D-])

MB 399. SPECIAL TOPICS. (1-16 Credits)
Equivalent to: MB 399H
This course is repeatable for 16 credits.

MB 399H. SPECIAL TOPICS. (1-16 Credits)
Attributes: HNRS – Honors Course Designator
Equivalent to: MB 399
This course is repeatable for 16 credits.

MB 401. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

MB 403. THESIS. (1-16 Credits)
This course is repeatable for 16 credits.
MB 405. READING AND CONFERENCE. (1-16 Credits)
Conference: Instruction in microbiology.
This course is repeatable for 16 credits.

MB 406. SPECIAL PROJECTS. (1-16 Credits)
Reading and Conference/Instructor in Microbiology.
This course is repeatable for 16 credits.

MB 407. SEMINAR. (1-16 Credits)
Graded P/N.
This course is repeatable for 16 credits.

MB 410. OCCUPATIONAL INTERNSHIP. (1-10 Credits)
Supervised work experience at selected cooperating institutions, agencies, laboratories, clinics or companies. Maximum of 10 credits allowed but no more than 3 credits may be used to satisfy microbiology major requirement of 36 credits. Graded P/N.
This course is repeatable for 10 credits.

MB 416. IMMUNOLOGY. (3 Credits)
Basic theory and applications of immunochemistry, immunogenetics, and cellular immunology. Examination of immunologically related diseases.
Prerequisites: BB 450 with D- or better or BB 490 with D- or better

MB 417. IMMUNOLOGY LABORATORY. (2 Credits)
Laboratory on the applications of current immunological techniques.
Prerequisites: (MB 303 with D- or better or MB 303H with D- or better) and MB 416 (may be taken concurrently) [D-]

MB 420. MICROBIAL GENOMES, BIOGEOCHEMISTRY, AND DIVERSITY. (3 Credits)
A survey of microbial diversity from the earliest lifeforms to the modern role of bacteria and archaea in global biogeochemical cycles. Topics covered include molecular evolution, microbial genomics, biochemical diversity, and metabolic pathways that adapt cells to extreme environments. Particular emphasis is placed on marine systems, from photosynthesis in surface waters to life in the ocean crust.
Prerequisites: BB 451 with D- or better

MB 422. AQUATIC MICROBIOLOGY LABORATORY. (2 Credits)
Laboratory analyzing field samples from freshwater and marine systems to examine patterns of microbiological communities.
Prerequisites: MB 303 with D- or better and MB 314 [D-]

MB 430. BACTERIAL PATHOGENESIS. (3 Credits)
Bacteria pathogenic for humans, emphasizing the structural, physiological and genetic mechanisms of pathogenesis. Role of the immune system in pathogenesis and protection.
Prerequisites: MB 302 with D- or better and MB 310 [D-] and (BB 451 [D-] or BB 491 [D-])

MB 434. VIROLOGY. (3 Credits)
Properties of viruses, their biology and pathogenesis. Emphasis on viruses causing human disease.
Prerequisites: ((BB 450 with D- or better or BB 450H with D- or better) and (BB 451 [D-] or BB 451H [D-])) or (BB 490 [D-] and BB 491 [D-] and BB 492 [D-])

MB 435. PATHOGENIC MICROBES LABORATORY. (2 Credits)
Laboratory experiments to illustrate concepts presented in MB 430 and/or MB 434, focusing on pathogenic microorganisms.
Prerequisites: (MB 303 with D- or better or MB 303H with D- or better) and MB 302 [D-] and (MB 430 (may be taken concurrently) [D-] or MB 434 (may be taken concurrently) [D-])

MB 436. THE HUMAN MICROBIOME. (3 Credits)
Examines the biodiversity, function, and medical importance of the communities of microorganisms that inhabit the human body. A diverse array of topics will be discussed, including how the human microbiome is studied, case studies of specific aspects of the human microbiome, and emerging theories of how the microbiome influences human health.
Prerequisites: BI 314 with D- or better or BB 314 with D- or better or BI 314H with D- or better or MB 302 with D- or better

MB 440. FOOD MICROBIOLOGY. (3 Credits)
Role of microorganisms in food spoilage, infection, and intoxication; also basic principles in contamination control and germicidal treatment during processing, preparing, and distributing food for consumption.
Prerequisites: MB 302 with D- or better

MB 441. FOOD MICROBIOLOGY LABORATORY. (2 Credits)
Laboratory techniques to accompany MB 440/MB 540.
Prerequisites: (MB 303 with D- or better or MB 303H with D- or better) and MB 440 (may be taken concurrently) [D-]

MB 448. MICROBIAL ECOLOGY. (3 Credits)
A comparison of soil sediments and freshwater as microbial habitats. Discussion of the role of microorganisms in nutrient cycles, effects of microbial activity on plant and animal life.
Prerequisites: MB 302 with D- or better

MB 456. MICROBIAL GENETICS AND BIOTECHNOLOGY. (3 Credits)
General biology of natural, genetically engineered, and composite plasmids. Major topics include extrachromosomal DNA replication, plasmid transmission, insertion elements, transposons, gene expression, and recombinant DNA vectors. Biotechnological applications and molecular genetic tools are emphasized.
Prerequisites: MB 302 with D- or better and (BB 450 [D-] or BB 490 [D-]) and (BB 451 [D-] or BB 491 [D-]) and (MB 310 [D-] or BB 492 [D-])

MB 479. FERMENTATION MICROBIOLOGY. (3 Credits)
An introduction to industrial microbiology with a focus on the physiology of fermentation and use of microorganisms for the production of food ingredients, fermented foods, and beverages. FST students need to take BB 350 and MB students need to take BB 450 for their respective majors. CROSSLISTED as FST 479/FST 579.
Prerequisites: (BI 212 with C- or better or BI 212H with C- or better) and CH 331 [C-] and CH 332 [C-] and (BB 350 [D-] or BB 450 [D-]) and MB 302 [D-]
Equivalent to: FST 479

MB 480. GENERAL PARASITOLOGY. (3 Credits)
Introduction to parasitology. The course emphasizes medical parasitology, but will cover a broad overview of parasitology, covering important groups and host/parasite relationships among all taxa from invertebrates to vertebrates, including mammals.

MB 490. MICROBIOLOGY CAPSTONE EXPERIENCE. (2 Credits)
Capstone experience for microbiology students to practice professional skills necessary to sustain a career in science. Students will work in teams to analyze research data and communicate this analysis, in addition to explore career opportunities and learn how to successfully compete for jobs. Graded P/N.
Prerequisites: MB 302 with D- or better

MB 491. FISH DISEASES IN CONSERVATION BIOLOGY AND AQUACULTURE. (3 Credits)
Introduction to diseases of fish including pathogens important to aquaculture and ornamental industries as well as to wild fish populations and conservation programs. CROSSLISTED as FW 491/FW 591.
Equivalent to: FW 491
MB 496. FISH DISEASES IN CONSERVATION BIOLOGY AND AQUACULTURE LAB. (2 Credits)
This laboratory complements lectures in FW/MB 491/591, with students learning basic necropsy techniques; identification of bacterial, viral and metazoan pathogens; and molecular identification methods. CROSSLISTED as FW 496/FW 596.
Equivalent to: FW 496

MB 499. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

MB 501. RESEARCH. (1-16 Credits)
PREREQ: Departmental approval required.
This course is repeatable for 16 credits.

MB 503. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

MB 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

MB 507. SEMINAR. (1 Credit)
Graded P/N.
This course is repeatable for 99 credits.

MB 510. INTERNSHIP. (1-16 Credits)
This course is repeatable for 16 credits.

MB 511. SCIENTIFIC SKILLS. (1 Credit)
Foundational skills for success in graduate school. Students will also become familiar with ongoing research programs in three active programs in the Microbiology Program.

MB 512. HIGHLIGHTS OF MICROBIOLOGY. (1 Credit)
Designed for students to gain familiarity with the history of microbiology through reading, reviewing and writing about great papers in the field. Students also meet the Microbiology Program faculty and students, and learn about some of the research in the Microbiology Program through attending colloquium.

MB 513. MICROBIAL SYSTEMS. (3 Credits)
Presentation of a modern view of microbiology through the lens of microbes’ influences on our planet’s habitats and inhabitants. Discusses current research and the use of advanced techniques to illustrate how microbiology is contributing to many cross-disciplinary problems that can involve engineering, public health, sociology, ecology, geology, etc.

MB 516. IMMUNOLOGY. (3 Credits)
Basic theory and applications of immunochemistry, immunogenetics, and cellular immunology. Examination of immunologically related diseases.

MB 517. IMMUNOLOGY LABORATORY. (2 Credits)
Laboratory on the applications of current immunological techniques.

MB 520. MICROBIAL GENOMES, BIOGEOCHEMISTRY, AND DIVERSITY. (3 Credits)
A survey of microbial diversity from the earliest lifeforms to the modern role of bacteria and archaea in global biogeochemical cycles. Topics covered include molecular evolution, microbial genomics, biochemical diversity, and metabolic pathways that adapt cells to extreme environments. Particular emphasis is placed on marine systems, from photosynthesis in surface waters to life in the ocean crust.

MB 530. BACTERIAL PATHOGENESIS. (3 Credits)
Bacteria pathogenic for humans, emphasizing the structural, physiological and genetic mechanisms of pathogenesis. Role of the immune system in pathogenesis and protection.

MB 534. VIROLOGY. (3 Credits)
Properties of viruses, their biology and pathogenesis. Emphasis on viruses causing human disease.

MB 540. FOOD MICROBIOLOGY. (3 Credits)
Role of microorganisms in food spoilage, infection, and intoxication; also basic principles in contamination control and germicidal treatment during processing, preparing, and distributing food for consumption.

MB 541. FOOD MICROBIOLOGY LABORATORY. (2 Credits)
Laboratory techniques to accompany MB 440/MB 540.
Prerequisites: MB 540 (may be taken concurrently) with C or better

MB 548. MICROBIAL ECOLOGY. (3 Credits)
A comparison of soil sediments and freshwater as microbial habitats. Discussion of the role of microorganisms in nutrient cycles, effects of microbial activity on plant and animal life.

MB 555. BIOLOGY OF THE PROKARYOTES. (3 Credits)
An integrative graduate course examining bacterial and archaean life at different levels of biological organization, emphasizing current research and analysis of primary literature. The various life styles of prokaryotes are the common theme of the course. Topics include biofilms, cooperation and communication, development, stress responses, metabolic interactions involved in global nutrient cycling. Offered every even year in winter term.

MB 556. MICROBIAL GENETICS AND BIOTECHNOLOGY. (3 Credits)
General biology of natural, genetically engineered, and composite plasmids. Major topics include extrachromosomal DNA replication, plasmid transmission, insertion elements, transposons, gene expression, and recombinant DNA vectors. Biotechnological applications and molecular genetic tools are emphasized.

MB 579. FERMENTATION MICROBIOLOGY. (3 Credits)
An introduction to industrial microbiology with a focus on the physiology of fermentation and use of microorganisms for the production of food ingredients, fermented foods, and beverages. CROSSLISTED as FST 479/FST 579.
Equivalent to: FST 579

MB 580. GENERAL PARASITOLOGY. (3 Credits)
Introduction to parasitology. The course emphasizes medical parasitology, but will cover a broad overview of parasitology, covering important groups and host/parasite relationships among all taxa from invertebrates to vertebrates, including mammals.

MB 591. FISH DISEASES IN CONSERVATION BIOLOGY AND AQUACULTURE. (3 Credits)
Introduction to diseases of fish including pathogens important to aquaculture and ornamental industries as well as to wild fish populations and conservation programs. CROSSLISTED as FW 491/FW 591.
Equivalent to: FW 591

MB 596. FISH DISEASES IN CONSERVATION BIOLOGY AND AQUACULTURE LAB. (2 Credits)
This laboratory complements lectures in FW/MB 491/591, with students learning basic necropsy techniques; identification of bacterial, viral and metazoan pathogens; and molecular identification methods. CROSSLISTED as MB 496/MB 596.
Equivalent to: FW 596

MB 599. SELECTED TOPICS. (0-6 Credits)
This course is repeatable for 24 credits.

MB 601. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.
MB 603. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

MB 605. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

MB 607. SEMINAR. (1 Credit)
Graded P/N.
This course is repeatable for 99 credits.

MB 610. INTERNSHIP. (1-9 Credits)
This course is repeatable for 16 credits.

MB 668. MICROBIAL BIOINFORMATICS AND GENOME EVOLUTION. (4 Credits)
Theoretical and practical issues in microbial genome sequencing and annotation, with an emphasis on evolutionary theory and comparative analysis of microbial genome sequences. Metabolic prediction from genomes, with a population genetics perspective on comparative microbial genomics. Exploration of applications of genomics and allied tools to microbial populations, including metagenomics, metaproteomics, and metatranscriptomics.

MB 699. SPECIAL TOPICS. (0-16 Credits)
Lec/lab.
This course is repeatable for 16 credits.