FOREST ENGINEERING, RESOURCES AND MANAGEMENT

The mission of the Department of Forest Engineering, Resources and Management (FERM) is to develop, communicate, and teach the science, knowledge and engineering necessary for the sustainable management of forest, land, and water resources to achieve economic, environmental, and social objectives. Teaching and research focus on support and enhancement of active forest management across the full range of owner objectives, from ecosystem restoration to timber production. FERM includes biologists, engineers, economists, biometricians, hydrologists, silviculturists and applied ecologists.

The Department of Forest Engineering, Resources and Management offers undergraduate degree programs leading to professional practice in forestry and forest engineering. It also offers more broadly defined graduate programs at the master’s and doctorate levels in Sustainable Forest Management, including six areas of concentration.

Forestry Undergraduate Program

The forest management profession requires an understanding of natural resource systems and the management of forest resources for multiple uses. The Bachelor of Science (BS) degree in Forestry provides a broad-based education with the goal of preparing students to be successful forest managers. Graduates must understand biological and physical processes occurring in forests, the social and economic forces that influence policies and actions affecting forests, natural resource systems, and management of forest resources for multiple uses. Students also learn how values affect forest management planning so they can communicate effectively with others and make relevant decisions.

The core curriculum provides a broad-based education which includes basic courses in the biological, physical, social sciences, as well as professional courses designed to prepare students to manage forest resources. The Forestry BS also requires six months of relevant work experience intended to provide the enhanced understanding of the professional workplace. Students are required to select one of three options and serves to fulfill the 180 credits for graduation:

- Forest Management
- Forest Operations Management
- Forest Restoration and Fire

Graduates are employed by private and public organizations. The private sector includes the timber and forest products industry, forestry consulting firms, environmental organizations, and self-employment. Public employers include federal, state, and local government agencies such as the U.S. Forest Service, Bureau of Land Management, National Park Service, and state departments of forestry and natural resources.

The Bachelor of Science degree in Forestry is accredited by the Society of American Foresters.

Forest Engineering Undergraduate Program

The Forest Engineering Undergraduate Program provides an engineering education within a strong forestry context. The program is founded on fundamental principles of forest science and engineering science. Forest Engineering program objectives are to prepare graduates to plan and implement complex forestry and natural resource operations that help meet global demands for wood products while sustaining water, habitat, and other forest resources. It provides “work-ready” graduates for entry into the diverse professional field of forest engineering. Early career accomplishments include harvest unit design, forest road location and design, contract inspection and administration, cost analysis, and forest transportation management. Mid-career accomplishments commonly expand to involve aspects of engineering management, including planning and budgeting, supervision, wood supply procurement, harvest and road design reviews, and scheduling and controlling forest operations.

Specifically, the Forest Engineering Undergraduate Program provides fundamental coverage of the following:

- Fundamental engineering and forestry principles
- Physical and biological aspects of soil and water resources
- Surveying and measurement of land and forest resources
- Analysis and design of the forest transportation system
- Analysis and design of harvesting operations
- Economics and operational planning principles

Integration of these topics enables forest engineering graduates to develop and manage safe, economical, and environmentally sound forest operations. Design experiences that integrate the topics listed above and steadily build on previous course material are distributed throughout the upper-division portion of the program. The Forest Engineering capstone sequence during the senior year provides an opportunity for students to bring together all the topics from the curriculum in a project framework that includes the field and office engineering tasks associated with the planning and design of forest operations. The capstone sequence is integrated with the Forestry capstone sequence to provide realistic interdisciplinary planning and design experience.

Forest engineering graduates are employed by private forestry firms, public forestry agencies, logging and construction companies, engineering consulting firms, and surveying firms. Some graduates establish their own consulting businesses after a few years of field experience. Career progression following graduation can be quite varied. Some graduates gravitate toward technical positions while others move quickly toward management of harvesting and other forest operations, or more broadly defined management of the forest land base.

The Bachelor of Science degree in Forest Engineering can be earned through completion of the Forest Engineering program or the Forest Engineering-Civil Engineering double degree program. The BS degree in Forest Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org/.

The BS in Forest Engineering is also accredited by the Society of American Foresters.

Completion of the five-year, double-degree Forest Engineering-Civil Engineering program results in a BS in Forest Engineering and a BS in Civil Engineering, offered by the School of Civil and Construction
Engineering. The BS in Civil Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org/.

Forest engineering is a licensed profession in the state of Oregon. The BS in Forest Engineering meets the administrative rules established by the Oregon State Board of Examiners for Engineering and Land Surveying (OSBEELS) as evidence of adequate preparation for the Fundamentals of Engineering Examination, the first of two examinations required for professional engineering licensing. The BS in Forest Engineering, with the completion of appropriate program electives, also meets the OSBEELS administrative rules for evidence of adequate preparation for the Fundamentals of Land Surveying Examination, the first of two examinations required for professional land surveyor licensing.

Undergraduate Programs

Majors

- Forest Engineering (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/forest-engineering-bs-hbs)
- Pre-Forest Engineering (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/pre-forest-engineering)
- Forest Engineering-Civil Engineering (Two BS degrees) (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/forest-engineering-civil-engineering-bs-hbs)
- Pre-Forest Engineering-Civil Engineering (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/pre-forest-engineering-civil-engineering)
- Forestry (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/forestry-bs-hbs)
- Pre-Forestry (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/pre-forestry)

Options:
- Forest Management
- Forest Operations Management
- Forest Restoration and Fire

Minor

- Forestry (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/forestry-minor)

Graduate Programs

Major

- Sustainable Forest Management (http://catalog.oregonstate.edu/college-departments/forestry/forest-engineering-resources-management/sustainable-forest-management-mf-ms-phd)

Jim Johnson, Interim Department Head
280 Peavy Hall
Oregon State University
Corvallis, OR 97331-8615
541-737-4952
Email: fermd@oregonstate.edu
Website: http://ferm.forestry.oregonstate.edu/

Faculty

Professors Bailey, Chung, Fitzgerald, J. Johnson, Landgren, Maguire, Reed, Sessions PE, Shaw, Temesgen
Associate Professors Bennett, Bowers, Davis, Hatten, Leshchinsky PE, Lyons, Olsen, Parker, Punches, Wing
Assistant Professors Belart, Bladon, Cushing, Gonzalez-Benecke, Kuusela, LeBoldus, Powers, Segura, Souder, Strimbu
Senior Instructor II Wimer
Senior Instructors Huntington, Kiser
Emeritus D. Adams, P. Adams, Atkinson, Bell, Boyle, Brodie, Brown, Elwood, Fletcher, Garland PE, Hann, Hermann, Hobbs, Kellogg, Montgomery, Murphy, Newton, Olsen, Pyles PE, Skaugset PE, Tappeiner, Tesch, Walstad

Courtesies/affiliate Faculty

Ager, Amishev, Argerich, Barrett, Brooks, Coble, Dumroese, Ferreiro, Fried, Han, Harrington, Hessburg, Johnson, Kerns, Light, McNassar, Monleon, Moriarty, Pinto, Rathburn, Riegel, Sobota, Stednick, Strunk, Wagenbrenner, White, Zald, Zamora

Registered Professional Civil Engineer (Civil Engineering) and Professional Forester (Forest Engineering) in one or more states
Certified Water Right Examiner
PE Registered Professional Engineer in one or more states
RPF Registered Professional Forester in one or more states
PLS Registered Professional Land Surveyor in one or more states

Forest Engineering

FE 101. INTRODUCTION TO FOREST ENGINEERING. (2 Credits)
Introduction to the forest engineering discipline. Discussion of critical issues, available resources, career opportunities and professional opportunities. Overview of field instruments and analytical approaches.

FE 102. FOREST ENGINEERING PROBLEM SOLVING AND TECHNOLOGY. (3 Credits)
A technology applications course designed to introduce students to formulating and implementing computational solutions to engineering analysis and design problems in a digital environment. Students will learn to evaluate engineering problems, formulate one or more solution techniques or algorithms, and code the solution using spreadsheet and/or programming software. Professionalism in completing and presenting laboratory exercises is emphasized. Laboratory examples draw from a variety of engineering topics. This course may be substituted for CE 102, Civil Engineering I: Problem Solving and Technology.

FE 208. FOREST SURVEYING. (4 Credits)
Introduction to theory and practice of surveying methods and measurements as applied to the specifics of forestry problems and their solutions. This is the first of a four-course sequence (FE 208, 209, 310, 311). Together with FE 257 it is designed to prepare students for the Fundamentals of Land Surveying Exam, which is necessary to become a professional land surveyor.

Prerequisites: MTH 112 with C or better or MTH 241 with C or better or MTH 251 with C or better or MTH 251H with C or better or MTH 252 with C or better or MTH 252H with C or better
FE 209. FOREST PHOTOGRAMMETRY AND REMOTE SENSING. (4 Credits)
Management and conservation of natural resources with the fundamentals of spatial data acquisition from airborne and spaceborne sensors. Introduction to theory of spectral reflectance properties of vegetation, the principles of photographic analysis and aerial photo-interpretation and new advances such as LIDAR.
Prerequisites: MTH 112 with C or better or MTH 241 with C or better or MTH 251 with C or better or MTH 251H with C or better or MTH 252 with C or better or MTH 252H with C or better

FE 257. GIS AND FOREST ENGINEERING APPLICATIONS. (3 Credits)
An introduction to the appropriate use and potential applications of geographic information systems (GIS) and related technologies (GPS and remote sensing) in forest management and operational planning and problem solving. Students are presented with lectures and exercises that cover a wide range of GIS and GIS-related topics and issues including spatial database creation, structure, analysis, and modeling. Lec/lab.

FE 307. JUNIOR SEMINAR. (1 Credit)
College is the time to develop the skills necessary for the transition between academics and career. In conjunction with the expertise already available on campus, this course will guide students through career planning, exploration, placement, and employer expectations. CROSSLISTED as FOR 307.
Equivalent to: FOR 307

FE 310. FOREST ROUTE SURVEYING. (4 Credits)\Route surveying and site surveying applied to forestry problems. Use of surveying equipment; traversing; computations; leveling; horizontal, vertical, compound, reverse and spiral curves; earthwork; construction staking as applied to new road and existing road P-line survey. Includes rapid survey techniques. Lec/lab.
Prerequisites: (FE 208 with C or better or FE 308 with C or better) or CE 361 with C or better or CEM 263 with C or better

FE 312. FORESTRY FIELD SCHOOL. (2 Credits)
A hands-on experience in the major aspects of forestry, including regeneration surveys, silviculture, cruising, recreation, forest disturbances, logging site and mill visits, east and west of the Cascades Range. CROSSLISTED as FOR 312.
Equivalent to: FOR 312

FE 315. SOIL ENGINEERING. (4 Credits)
Prerequisites: ENGR 213 (may be taken concurrently) with D- or better

FE 316. SOIL MECHANICS. (4 Credits)
Soil strength and soil mechanics theories applied to analysis of slope stability, retaining structures, foundations, and pavements. Lec/lab.
Prerequisites: FE 315 (may be taken concurrently) with C- or better or CE 372 (may be taken concurrently) with D- or better

FE 330. FOREST ENGINEERING FLUID MECHANICS AND HYDRAULICS. (3 Credits)
Fluid properties, pressure, fluid statics, continuity, energy equation, single and series pipe flow, open channel hydraulics, peakflow estimates for culvert design, stream crossing design. Lec/lab.
Prerequisites: ENGR 213 (may be taken concurrently) with D- or better and FE 102 (may be taken concurrently) [C-

FE 370. HARVESTING OPERATIONS. (4 Credits)
Timber harvesting and transport methods from the forest to the mill. Technical feasibility, economic, and environmental relationships in forestry operations.

FE 371. HARVESTING PROCESS ENGINEERING. (4 Credits)
Timber harvesting equipment and systems. Harvesting process evaluation and decisions aided by forest engineering analysis. Lec/lab.
Prerequisites: ENGR 211 with C or better and FE 102 [C-

FE 403. THESIS. (1-16 Credits)
PREREQ: Departmental approval required.
This course is repeatable for 16 credits.

FE 405. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

FE 406. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

FE 407. SEMINAR. (1-16 Credits)
This course is repeatable for 16 credits.

FE 415. FOREST ROAD ENGINEERING. (3 Credits)
Structural characteristics of bridges, load rating, structural design of culverts, aggregate testing and evaluation, environmental assessment of forest road systems, road maintenance cycles and management.
Prerequisites: (ENGR 211 with D- or better or ENGR 211H with D- or better) and (ENGR 213 [D-] or ENGR 213H [D-]) and FE 316 [C-] and FE 415 [C-

FE 423. UNMANNED AIRCRAFT SYSTEM REMOTE SENSING. (3 Credits)
Unmanned Aircraft System (UAS) Geomatics presents techniques in UAS design and applications for remote sensing measurements of both natural and constructed landscapes.
Prerequisites: FE 309 with C or better or GEOG 480 with C or better or GEOG 481 with C or better or GEOG 444 with C or better or GEO 466 with C or better

FE 430. WATERSHED PROCESSES. (4 Credits)
Effects of land use practices on the physical hydrology (interception, infiltration, evapotranspiration, subsurface flow and surface runoff, water yields, and peak flows) of forested watersheds. Surface erosion, mass soil movements, stream temperatures, nutrient levels and effects of management activities upon riparian systems; forest practice rules. Lec/lab.

FE 434. FOREST WATERSHED MANAGEMENT. (4 Credits)
Physical hydrology, erosion processes, streams, and riparian areas of forested ecosystems. The material can be widely applied, but is applicable primarily to the humid, temperate rainforests of the Pacific Northwest.
Prerequisites: (CH 121 with C or better or CH 201 with C or better or CH 231 with C or better) and (SOIL 205 [C] or CSS 305 [C] or CSS 205 [C]) and (MTH 241 [C] or MTH 251 [C] or MTH 251H [C])

FE 436. FOREST DISTURBANCE HYDROLOGY. (3 Credits)
Impacts of forest disturbance, including timber harvest, wildfire, insect outbreaks, and low frequency storms and floods on watershed hydrology and streams.
Prerequisites: FE 434 with C or better
Equivalent to: FE 435
FE 440. FOREST OPERATIONS ANALYSIS. (4 Credits)
Identification and measurement of production components in harvesting systems. Methods analysis, productivity improvement and engineering economics. Report writing skills emphasized. Lec/lab.
Prerequisites: FE 102 with C- or better and (FE 370 [C-] or FE 371 [C])

FE 444X. FOREST REMOTE SENSING AND PHOTOGRAMMETRY. (4 Credits)
Introduction to spectral reflectance, photogrammetry, image analysis, and point clouds. Fundamentals of data acquisition with passive and active sensors installed on airborne and spaceborne platforms. Radar and lidar in forestry.
Prerequisites: FE 257 with C or better and (MTH 112 [C] or MTH 241 [C] or MTH 251 [C] or MTH 251H [C] or MTH 252 [C] or MTH 252H [C])

FE 456. *INTERNATIONAL FORESTRY. (3 Credits)
An introduction to the biological, physical, and sociological factors that shape the world’s forests and the activities used to manage those forests. What influence these factors have on forest policies, practices, and outcomes. CROSSLISTED as FOR 456. (Bacc Core Course)
Attributes: CSGI – Core, Synth, Global Issues
Equivalent to: FOR 456

FE 457. TECHNIQUES FOR FOREST RESOURCE ANALYSIS. (4 Credits)
Use of linear programming, nonlinear programming, dynamic programming, and simulation to solve complex forest management problems, with emphasis on intertemporal multiple-use scheduling. Forestry transportation problems, multiple-use allocation, and investment analysis. Field trips required. CROSSLISTED as FOR 457/FOR 557.
Prerequisites: AREC 351 with C or better or FOR 330 with C or better
Equivalent to: FOR 457

FE 459. FOREST MANAGEMENT PLANNING AND DESIGN I. (4 Credits)
Integration of environmental, economic, and social aspects of forestry in management planning. Development of strategic and tactical plans using diverse data types and sources. Senior capstone class projects. Lec/lab. CROSSLISTED as FOR 459.
Equivalent to: FOR 459

FE 460. *FOREST OPERATIONS REGULATIONS AND POLICY ISSUES. (3 Credits)
Reviews regulations and other policies that affect timber harvesting and other forest practices, particularly policies that address concerns of environment, safety, employment and transportation. Discusses how such rules and other policies evolve, including the role of public perceptions, forestry professionals and other key policy players. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC

FE 469. FOREST MANAGEMENT PLANNING AND DESIGN II. (4 Credits)
A team-based, project-centric course for integrated timber harvest planning. Establish tactical and operational planning goals and constraints, identify feasible harvesting and transportation systems, and design harvest units to meet objectives and constraints. Lec/lab. CROSSLISTED as FOR 469.
Prerequisites: FE 459 with C or better or FOR 459 with C or better
Equivalent to: FOR 469

FE 470. LOGGING MECHANICS. (4 Credits)
Relationship of torque, power, and thrust to the operation of cable and ground-based harvesting systems. On-highway and off-highway heavy truck performance.
Prerequisites: (ENGR 211 with D- or better or ENGR 211H with D- or better) and ENGR 213 [D-] and FE 371 [C-]

FE 471. HARVESTING MANAGEMENT. (3 Credits)
Verification of harvesting assessment plans and operational planning/field layout. Practical logging skills related to harvest planning, operations monitoring, and designing worker training programs. Lec/lab.

FE 472. MECHANIZED HARVESTING AND SIMULATION. (2 Credits)
Study of harvesters, forwarders, and processing of timber for maximizing stand value. The use of a harvesting simulator will provide for a hands-on approach to learning.

FE 479. SLOPE AND EMBANKMENT DESIGN. (3 Credits)
A comprehensive overview of evaluating stability and performance for natural and engineering slopes. Design aspects include construction of road embankments, slope remediation techniques and application of geosynthetics for slope stabilization, slope and wall construction, and drainage. CROSSLISTED as CE 479/CE 579.
Prerequisites: CE 373 with C or better or FE 316 with C or better
Equivalent to: CE 479

FE 480. FOREST ENGINEERING PRACTICE AND PROFESSIONALISM. (1 Credit)
Personal and professional skills, attributes, and issues in forest engineering practice. Includes topics such as ethics, land stewardship, media relations and risk management.

FE 499. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 8 credits.

FE 500. RESEARCH AND SCHOLARSHIP. (1-16 Credits)
This course is repeatable for 16 credits.

FE 503. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

FE 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

FE 506. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

FE 507. SEMINAR. (1-16 Credits)
Subject matter as required by graduate programs. This course is repeatable for 16 credits.

FE 515. FOREST ROAD ENGINEERING. (3 Credits)
Location, surveying, design, cost estimation, and construction practices for forest roads. Lecture on principles, and laboratory field practice in locating, surveying, designing, and cost estimating.

FE 516. FOREST ROAD SYSTEM MANAGEMENT. (4 Credits)
Structural characteristics of bridges, load rating, structural design of culverts, aggregate testing and evaluation, environmental assessment of forest road systems, road maintenance cycles and management.

FE 523. UNMANNED AIRCRAFT SYSTEM REMOTE SENSING. (3 Credits)
Unmanned Aircraft System (UAS) Geomatics presents techniques in UAS design and applications for remote sensing measurements of both natural and constructed landscapes.
Prerequisites: GEOG 580 with C or better or GEOG 581 with C or better or GEO 544 with C or better or GEO 566 with C or better or OC 578 with C or better

FE 530. WATERSHED PROCESSES. (4 Credits)
Effects of land use practices on the physical hydrology (interception, infiltration, evapotranspiration, subsurface flow and surface runoff, water yields, and peak flows) of forested watersheds. Surface erosion, mass soil movements, stream temperatures, nutrient levels and effects of management activities upon riparian systems; forest practice rules. Lec/lab.
FE 532. FOREST HYDROLOGY. (4 Credits)
Physical hydrology, erosion processes, and attributes of stream ecosystems for forested watersheds. Material can be widely applied, but is applicable primarily to the humid, temperate rainforests of the Pacific Northwest. Lec/rec.

FE 536. FOREST DISTURBANCE HYDROLOGY. (3 Credits)
Impacts of forest disturbance, including timber harvest, wildfire, insect outbreaks, and low frequency storms and floods on watershed hydrology and streams.

FE 540. FOREST OPERATIONS ANALYSIS. (4 Credits)
Identification and measurement of production components in harvesting systems. Methods analysis, productivity improvement and engineering economics. Report writing skills emphasized. Lec/lab.

FE 544X. FOREST REMOTE SENSING AND PHOTOGRAMMETRY. (4 Credits)
Introduction to spectral reflectance, photogrammetry, image analysis, and point clouds. Fundamentals of data acquisition with passive and active sensors installed on airborne and spaceborne platforms. Radar and lidar in forestry.

FE 545. SEDIMENT TRANSPORT. (4 Credits)
Principles of sediment erosion, transportation and deposition in rivers, reservoirs, and estuaries; measurement, analysis, and computational techniques. Offered even years in winter term. CROSSLISTED as BEE 545.
Equivalent to: BEE 545

FE 552. FOREST TRANSPORTATION SYSTEMS. (4 Credits)
Analysis of interactions between harvesting and road systems. Advanced topics in road and landing spacing, determination of road standards, analysis of logging road networks, transfer and sort yard facility location. Simultaneous resource scheduling and transportation planning.

FE 555. FOREST SUPPLY CHAIN MGMT. (3 Credits)
Develop and implement operational planning and logistics scheduling systems to manage a forestry supply chain for typical forest organizations in the Pacific Northwest. Once developed, these supply chain plans will be implemented using simulation software that will allow students to view the results of their forest operations plans.

FE 557. TECHNIQUES FOR FOREST RESOURCE ANALYSIS. (4 Credits)
Use of linear programming, nonlinear programming, dynamic programming, and simulation to solve complex forest management problems, with emphasis on intertemporal multiple-use scheduling. Forestry transportation problems, multiple-use allocation, and investment analysis. Field trips required. CROSSLISTED as FOR 457/FOR 557.
Equivalent to: FOR 557

FE 560. FOREST OPERATIONS REGULATIONS AND POLICY ISSUES. (3 Credits)
Reviews regulations and other policies that affect timber harvesting and other forest practices, particularly policies that address concerns of environment, safety, employment and transportation. Discusses how such rules and other policies evolve, including the role of public perceptions, forestry professionals and other key policy players.

FE 570. LOGGING MECHANICS. (4 Credits)
Relationship of torque, power, and thrust to the operation of cable and ground-based harvesting systems. On-highway and off-highway heavy truck performance.

FE 571. HARVESTING MANAGEMENT. (3 Credits)
Verification of harvesting assessment plans and operational planning/field layout. Practical logging skills related to harvest planning, operations monitoring, and designing worker training programs.

FE 579. SLOPE AND EMBANKMENT DESIGN. (3 Credits)
A comprehensive overview of evaluating stability and performance for natural and engineering slopes. Design aspects include construction of road embankments, slope remediation techniques and application of geosynthetics for slope stabilization, slope and wall construction, and drainage. CROSSLISTED as CE 479/CE 579.
Equivalent to: CE 579

FE 599. SPECIAL TOPICS. (0-16 Credits)
Advanced topics in isotope hydrology. This course is repeatable for 16 credits.

FE 601. RESEARCH AND SCHOLARSHIP. (1-16 Credits)
This course is repeatable for 16 credits.

FE 603. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

FE 605. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

FE 606. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

FE 607. SEMINAR. (1-16 Credits)
Subject matter is required by graduate programs. This course is repeatable for 16 credits.

FE 640. SPECIAL TOPICS IN FOREST ENGINEERING. (1-3 Credits)
Recent advances in logging engineering, forest engineering, and forest operations. Content will vary with instructor. May be retaken for credit. This course is repeatable for 99 credits.

Forestry
FOR 111. INTRODUCTION TO FORESTRY. (3 Credits)
Forest resources in the world; forests and human well-being; where and how forests grow; environmental and human values; products, characteristics, and uses; basic elements of use, planning and management. Interpretation of forestry literature; professional origins in the U.S. Field trips required.

FOR 112. COMPUTING APPLICATIONS IN FORESTRY. (3 Credits)
An overview of computing applications used in all aspects of forestry work, but largely focused on development of intermediate and advanced spreadsheet skills using Microsoft Excel (e.g., complex formulas and functions, charting, and pivot tables). Additionally, the course rounds out essential skills in document formatting and presentation development.

FOR 199. SPECIAL STUDIES. (1-16 Credits)
This course is repeatable for 16 credits.

FOR 206. FOREST SOILS LABORATORY FOR SOIL 205. (1 Credit)
Laboratory exercise and field trips designed to develop student competency in soil processes, description, analysis, and assessment with a particular emphasis on the role of soils in managed and unmanaged forest ecosystems. (Bacc Core Course if taken with SOIL 205)
Attributes: CPBS – Core, Pers, Biological Science; CPPS – Core, Pers, Physical Science
Corequisites: SOIL 205

FOR 208. FOREST SOILS RECITATION. (1 Credit)
Readings, exercises, discussions designed to develop student competency in forest soil processes, description, analysis, and assessment. A particular emphasis will be placed on the role of soils in managed and unmanaged forest ecosystems.
FOR 307. JUNIOR SEMINAR. (1 Credit)
College is the time to develop the skills necessary for the transition between academics and career. In conjunction with the expertise already available on campus, this course will guide students through career planning, exploration, placement, and employer expectations. CROSSLISTED as FE 307.
Equivalent to: FE 307

FOR 312. FORESTRY FIELD SCHOOL. (2 Credits)
A hands-on experience in the major aspects of forestry, including regeneration surveys, silviculture, cruising, recreation, forest disturbances, logging site and mill visits, east and west of the Cascades Range. CROSSLISTED as FE 312.
Equivalent to: FE 312

FOR 321. FOREST MENSURATION. (5 Credits)
Introduction to static and dynamic forest models: defining what they are, how they might be used, and, in general terms, how they are developed.
Prerequisites: FOR 321 with C- or better and MTH 241 [D-] and (ST 201 [D-] or ST 351 [D-])

FOR 330. FORESTRY FIELD SCHOOL. (2 Credits)
A hands-on experience in the major aspects of forestry, including regeneration surveys, silviculture, cruising, recreation, forest disturbances, logging site and mill visits, east and west of the Cascades Range. CROSSLISTED as FE 312.
Equivalent to: FE 312

FOR 322. FOREST MODELS. (3 Credits)
Introduction to static and dynamic forest models: defining what they are, how they might be used, and, in general terms, how they are developed.
Prerequisites: FOR 321 with C- or better and MTH 241 [D-] and (ST 201 [D-] or ST 351 [D-])

FOR 330. FOREST RESOURCE ECONOMICS I. (4 Credits)
Basic arithmetic of interest and capital budgeting. Basic wood products markets. Forest resource markets and market failures. Nonmarket valuation and multiple-use forestry. Impacts of forest management and policy decisions on forest resource use. Lec/lab.
Prerequisites: (AEC 250 with C or better or AREC 250 with C or better or ECON 201 with C or better or ECON 201H with C or better) and (MTH 241 [C] or MTH 245 [C] or MTH 251 [C] or MTH 251H [C] or MTH 252 [C] or MTH 252H [C])

FOR 331. FOREST RESOURCE ECONOMICS II. (4 Credits)
Forest products markets, appraisal, rotation, thinning, uneven-aged management and forest regulation. Economics of timber management and harvest scheduling.
Prerequisites: ST 201 with C or better or ST 351 with C or better

FOR 346. TOPICS IN WILDLAND FIRE. (3 Credits)
An interdisciplinary survey of concepts relating to fire science, ecology, management, and policy. Includes case studies of several representative ecosystems, ranging from west- and eastside forests of the Pacific Northwest to shrub steppe ecosystems of the Intermountain West and chaparral ecosystems of southern California. Distance and campus-based delivery using videos, website, and discussion.

FOR 399. SPECIAL TOPICS. (0-16 Credits)
Equivalent to: FOR 399H
This course is repeatable for 16 credits.

FOR 399H. SPECIAL TOPICS. (1-16 Credits)
Attributes: HNRS – Honors Course Designator
Equivalent to: FOR 399
This course is repeatable for 16 credits.

FOR 401. RESEARCH AND SCHOLARSHIP. (1-16 Credits)
This course is repeatable for 16 credits.
FOR 436. WILDLAND FIRE SCIENCE AND MANAGEMENT. (4 Credits)
Principles and applications of fire as a natural resource management tool; the role of fire in conservation management, restoration, and preservation of ecosystems. Covers basic techniques and current research used to describe fire behavior and spread, fuels and fuel manipulation, and fire effects on the biota. Focus will be on fire as a natural process in ecosystem dynamics. Lec/lab.

FOR 441. SILVICULTURE PRINCIPLES. (4 Credits)
Nursery operation, vegetation management, herbivores, fire, seeding and planting techniques. Introduction to principles and techniques involving vegetation control, thinning, fertilizing, and harvesting. Environmental considerations related to forest stand treatments. Lec/lab.
Prerequisites: (FES 240 with C or better or FOR 240 with C or better) and (FES 141 [C] or FES 241 [C])

FOR 442. SILVICULTURE REFORESTATION. (4 Credits)
Silvicultural principles and practices needed to successfully regenerate forestlands in North America. Topics include artificial and natural regeneration, genetic improvement, seed orchards, forest tree nurseries, site preparation, seedling quality and handling, vegetation management, animal damage protection, early stand management, and ecological and ecophysiological considerations. Emphasis is placed on regeneration methods applied to plantations in western Oregon. Field trips required.
Prerequisites: SOIL 205 with C or better and (FES 240 [C] or FES 240H [C] or FOR 240 [C])
Corequisites: FOR 443

FOR 443. SILVICULTURAL PRACTICES. (4 Credits)
Manipulation of forest stand structure and dynamics to meet various resource management objectives. Covers key concepts and practices associated with vegetation control, thinning, fertilization, even-aged and uneven-aged regeneration systems including social and environmental considerations associated with treatments. Two-day field trip required. Lec/lab.
Prerequisites: (FES 240 with C or better or FES 240H with C or better or FOR 240 with C or better) and FOR 321 [C]
Corequisites: FOR 442

FOR 456. INTERNATIONAL FORESTRY. (3 Credits)
An introduction to the biological, physical, and sociological factors that shape the world’s forests and the activities used to manage those forests. What influence these factors have on forest policies, practices, and outcomes. CROSSLISTED as FE 456. (Bacc Core Course)
Attributes: CSGI – Core, Synth, Global Issues
Equivalent to: FE 456

FOR 457. TECHNIQUES FOR FOREST RESOURCE ANALYSIS. (4 Credits)
Use of linear programming, nonlinear programming, dynamic programming, and simulation to solve complex forest management problems, with emphasis on intertemporal multiple use scheduling. Forestry transportation problems, multiple-use allocation, and investment analysis. Field trips required. CROSSLISTED as FE 457/FE 557.
Prerequisites: AREC 351 with C or better or FOR 330 with C or better
Equivalent to: FE 457

FOR 459. FOREST MANAGEMENT PLANNING AND DESIGN I. (4 Credits)
Integration of environmental, economic, and social aspects of forestry in management planning. Development of strategic and tactical plans using diverse data types and sources. Senior capstone class projects. Lec/lab. CROSSLISTED as FE 459.
Equivalent to: FE 459

FOR 460. *FOREST POLICY. (4 Credits)
Policy formulation and analysis for forest resources. Consideration of policy affecting land management approaches to planning, management, and social and economic development. Major forestry policy areas covered include outdoor recreation, range, timber, wilderness, and wildlife and fish. Lec/lab. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC

FOR 462. NATURAL RESOURCE POLICY AND LAW. (3 Credits)
First of two offerings designed to provide an introduction to current environmental and natural resource law issues and disputes for students who will have to meet, consult, and work with lawyers throughout their professional career. Focus is on mechanisms governing resource allocation within the constraints of private property rights. Emphasis is placed on the federal Endangered Species Act and its relation to water allocation and public trust doctrines. Students will also gain a broad understanding of regulatory...

FOR 469. FOREST MANAGEMENT PLANNING AND DESIGN II. (4 Credits)
A team-based, project-centric course for integrated timber harvest planning. Establish tactical and operational planning goals and constraints, identify feasible harvesting and transportation systems, and design harvest units to meet objectives and constraints. Lec/lab. CROSSLISTED as FE 469.
Prerequisites: FE 459 with C or better or FOR 459 with C or better
Equivalent to: FE 469

FOR 499. SPECIAL TOPICS. (0-16 Credits)
Topics of current importance in forest resources issues, education, policies, economics, management, business, social values, silviculture, and biometrics. Topics will change from term to term. May be repeated with different topics for credit. Section 8: Social aspects of natural resource management (3 credits) graded.
This course is repeatable for 16 credits.

FOR 501. RESEARCH AND SCHOLARSHIP. (1-16 Credits)
This course is repeatable for 16 credits.

FOR 503. THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

FOR 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

FOR 506. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

FOR 507. SEMINAR. (1-16 Credits)
This course is repeatable for 16 credits.

FOR 508. WORKSHOP. (1-3 Credits)
This course is repeatable for 16 credits.

FOR 510. INTERNSHIP. (1-9 Credits)
This course is repeatable for 16 credits.

FOR 513. FOREST PATHOLOGY. (3 Credits)
Effects of diseases on forest ecosystems. Recognition of important groups, prediction of pathogen responses to environmental changes, and management strategies for protection of forest resources. Field trips. Lec/lab. CROSSLISTED as BOT 513.
Equivalent to: BOT 513

FOR 517. ADVANCED FOREST SOILS. (4 Credits)
Synthesize current information on fundamental properties and processes of forest soils with emphasis on applications to silviculture, soil conservation, and sustainable management of forested ecosystems. Lec/lab.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR 518</td>
<td>MANAGING FOREST NUTRITION.</td>
<td>3</td>
<td>Synthesize current information on nutrient limitations of forest productivity, long-term forest productivity, and mitigating and managing forest nutrition with emphasis on forests of the Pacific Northwest.</td>
</tr>
<tr>
<td>FOR 520</td>
<td>GEOSPATIAL DATA ANALYSIS WITH MATLAB.</td>
<td>3</td>
<td>An introduction into analysis of spatial and other data using Matlab. The course will provide a practical introduction and is designed as a hands-on learning experience.</td>
</tr>
<tr>
<td>FOR 524</td>
<td>FOREST BIOMETRICS.</td>
<td>3</td>
<td>Advanced topics in forest biometrics, including measurement of forest structure and dynamics, application of sampling theory and methods, and statistical techniques for interpreting forestry data.</td>
</tr>
<tr>
<td></td>
<td>Equivalent to: F 524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 525</td>
<td>FOREST MODELING.</td>
<td>3</td>
<td>Examination of regression techniques and assumptions used to develop static and dynamic equations of tree and stand attributes.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: ST 552 with C or better</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equivalent to: F 525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 534</td>
<td>ECONOMICS OF THE FOREST RESOURCE.</td>
<td>3</td>
<td>Economic aspects of forest production, regulation, and silvicultural applications. Microeconomic interactions of forest production and regulation and environmental constraints. Offered alternate years.</td>
</tr>
<tr>
<td>FOR 536</td>
<td>WILDLAND FIRE SCIENCE AND MANAGEMENT.</td>
<td>4</td>
<td>Principles and applications of fire as a natural resource management tool; the role of fire in conservation management, restoration, and preservation of ecosystems. Covers basic techniques and current research used to describe fire behavior and spread, fuels and fuel manipulation, and fire effects on the biota. Focus will be on fire as a natural process in ecosystem dynamics. Lec/lab.</td>
</tr>
<tr>
<td>FOR 542</td>
<td>INTERNATIONAL INTENSIVE SILVICULTURE.</td>
<td>2</td>
<td>Operational and ecological aspects of intensive silvicultural management of planted forests around the world. Guest speakers in different countries will describe the type of silvicultural management that is carried out in the speaker’s country from species and genetic selection, to harvest and rotation length, including site preparation and planting techniques. Emphasis on comparing silvicultural practices in each country to the management of plantations in western Oregon.</td>
</tr>
<tr>
<td>FOR 543</td>
<td>SILVICULTURAL PRACTICES.</td>
<td>5</td>
<td>Manipulation of immature and mature forest stands for various resource management objectives. Principles and techniques involving vegetation control, thinning, fertilizing, and harvesting. Environmental considerations related to stand treatments. Two-day field trips required.</td>
</tr>
<tr>
<td>FOR 549</td>
<td>SILVICULTURAL INFLUENCES ON FOREST ECOSYSTEM DYNAMICS.</td>
<td>3</td>
<td>Fundamental biological and ecological principles for the design and implementation of silvicultural regimes that achieve a wide diversity of forest ecosystem management objectives.</td>
</tr>
<tr>
<td>FOR 550</td>
<td>SUSTAINABLE FOREST MANAGEMENT.</td>
<td>3</td>
<td>Sustainable forestry as part of the global sustainability movement. History of sustainability and its influence on decision-making in forest management. Current dimensions of sustainability: forest certification, climate change, role of environmental ethics, biodiversity conservation, maintenance of long-term site productivity, conservation of soil and water resources, roles of social institutions, and links to concerns for social justice.</td>
</tr>
<tr>
<td>FOR 557</td>
<td>TECHNIQUES FOR FOREST RESOURCE ANALYSIS.</td>
<td>4</td>
<td>Use of linear programming, nonlinear programming, dynamic programming, and simulation to solve complex forest management problems, with emphasis on intertemporal multiple use scheduling. Forestry transportation problems, multiple-use allocation, and investment analysis. Field trips required. CROSSTLISTED as FE 457/FE 557. Equivalent to: FE 557.</td>
</tr>
<tr>
<td>FOR 561</td>
<td>FOREST POLICY ANALYSIS.</td>
<td>3</td>
<td>Basic elements of forest policy problems, including resource allocation and efficiency, distribution, and interpersonal equity, taxation, regulation, and control, and planning and uncertainty. Emphasis on policy and analysis and its uses in policy decision.</td>
</tr>
<tr>
<td>FOR 562</td>
<td>NATURAL RESOURCE POLICY AND LAW.</td>
<td>3</td>
<td>First of two offerings designed to provide an introduction to current environmental and natural resource law issues and disputes for students who will have to meet, consult, and work with lawyers throughout their professional career. Focus is on mechanisms governing resource allocation within the constraints of private property rights. Emphasis is placed on the federal Endangered Species Act and its relation to water allocation and public trust doctrines. Students will also gain a broad understanding of regulatory laws.</td>
</tr>
<tr>
<td>FOR 563</td>
<td>ENVIRONMENTAL POLICY AND LAW INTERACTIONS.</td>
<td>3</td>
<td>Second of two offerings designed to provide an introduction to current environmental and natural resource law issues and disputes for students who will have to meet, consult, and work with lawyers throughout their professional career. Focus is on the arena of regulatory environmental laws. Environmental torts, regulation of point and non-point source pollution under the federal Clean Water Act, wetlands protection, and laws governing agricultural and forest practices will be examined as examples of regulatory frameworks for achieving resource protection. Students will be exposed to the basic framework of federal laws regulating air and hazardous waste pollutants.</td>
</tr>
<tr>
<td>FOR 599</td>
<td>SPECIAL TOPICS.</td>
<td>1-16</td>
<td>Topics of current importance in forest resources issues, education, policies, economics, management, business, social values, silviculture, and biometrics. Topics will change from term to term. May be repeated with different topics for credit. Section 8: Social aspects of natural resource management (3 credits) graded. This course is repeatable for 16 credits.</td>
</tr>
<tr>
<td>FOR 601</td>
<td>RESEARCH AND SCHOLARSHIP.</td>
<td>1-16</td>
<td>This course is repeatable for 16 credits.</td>
</tr>
<tr>
<td>FOR 603</td>
<td>THESIS.</td>
<td>1-16</td>
<td>This course is repeatable for 999 credits.</td>
</tr>
<tr>
<td>FOR 605</td>
<td>READING AND CONFERENCE.</td>
<td>1-16</td>
<td>This course is repeatable for 16 credits.</td>
</tr>
<tr>
<td>FOR 606</td>
<td>PROJECTS.</td>
<td>1-16</td>
<td>This course is repeatable for 16 credits.</td>
</tr>
<tr>
<td>FOR 607</td>
<td>SEMINAR.</td>
<td>1-16</td>
<td>This course is repeatable for 16 credits.</td>
</tr>
<tr>
<td>FOR 699</td>
<td>SPECIAL TOPICS.</td>
<td>1-16</td>
<td>Topics of current importance in forest resources issues, education, policies, economics, management, business, social values, silviculture, and biometrics. Topics will change from term to term. May be repeated with different topics for credit. This course is repeatable for 16 credits.</td>
</tr>
</tbody>
</table>
FOR 808. WORKSHOP. (1-9 Credits)
This course is repeatable for 16 credits.