MATERIALS SCIENCE GRADUATE MINOR

The discipline of materials science is inherently interdisciplinary, involving fundamental aspects of chemistry, physics, biology, geoscience, agricultural science, mathematics, and engineering.

Reflecting this characteristic, the Materials Science Program at Oregon State University, initiated in the 1980s, is distributed over nine departments spanning three OSU colleges. This allows students to earn MS and PhD degrees in Materials Science in many different areas of concentration, including all classes of materials, and in a wide range of materials behavior. The course work requirements are extremely flexible to allow students to tailor their program of study to directly support their research activities.

For more information, visit the website (http://matsci.oregonstate.edu/) or contact the Materials Science Graduate Program, School of Mechanical & Industrial Engineering, info-mime@oregonstate.edu, 541-737-3441.

Minor Code: 3200

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS 570</td>
<td>STRUCTURE-PROPERTY RELATIONS IN MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>Select a minimum of 11 credits from the following:</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>CH 616</td>
<td>CRYSTALLOGRAPHY AND X-RAY DIFFRACTION</td>
<td></td>
</tr>
<tr>
<td>CHE 611/ECE 611</td>
<td>ELECTRONIC MATERIALS PROCESSING</td>
<td></td>
</tr>
<tr>
<td>ECE 518</td>
<td>SEMICONDUCTOR PROCESSING</td>
<td></td>
</tr>
<tr>
<td>MATS 545</td>
<td>WELDING METALLURGY</td>
<td></td>
</tr>
<tr>
<td>MATS 555</td>
<td>EXPERIMENTAL TECHNIQUES IN MATERIAL SCIENCE</td>
<td></td>
</tr>
<tr>
<td>MATS 571</td>
<td>ELECTRONIC PROPERTIES OF MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MATS 578</td>
<td>THIN FILM MATERIALS CHARACTERIZATION AND PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>MATS 582</td>
<td>RATE PROCESSES IN MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MATS 584</td>
<td>ADVANCED FRACTURE OF MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MATS 588</td>
<td>COMPUTATIONAL METHODS IN MATERIALS SCIENCE</td>
<td></td>
</tr>
<tr>
<td>MATS 659</td>
<td>PRINCIPLES OF TRANSMISSION ELECTRON MICROSCOPY</td>
<td></td>
</tr>
<tr>
<td>OC 528</td>
<td>MICROPROBE ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>WSE 535</td>
<td>POLYMER SYNTHESIS AND STRUCTURE</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 15

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD Minor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATS 570</td>
<td>STRUCTURE-PROPERTY RELATIONS IN MATERIALS</td>
<td>4</td>
</tr>
<tr>
<td>Select a minimum of 14 credits from the following:</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>CH 616</td>
<td>CRYSTALLOGRAPHY AND X-RAY DIFFRACTION</td>
<td></td>
</tr>
<tr>
<td>CHE 611/ECE 611</td>
<td>ELECTRONIC MATERIALS PROCESSING</td>
<td></td>
</tr>
<tr>
<td>ECE 518</td>
<td>SEMICONDUCTOR PROCESSING</td>
<td></td>
</tr>
<tr>
<td>MATS 545</td>
<td>WELDING METALLURGY</td>
<td></td>
</tr>
<tr>
<td>MATS 555</td>
<td>EXPERIMENTAL TECHNIQUES IN MATERIAL SCIENCE</td>
<td></td>
</tr>
<tr>
<td>MATS 571</td>
<td>ELECTRONIC PROPERTIES OF MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MATS 578</td>
<td>THIN FILM MATERIALS CHARACTERIZATION AND PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>MATS 582</td>
<td>RATE PROCESSES IN MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MATS 584</td>
<td>ADVANCED FRACTURE OF MATERIALS</td>
<td></td>
</tr>
<tr>
<td>MATS 588</td>
<td>COMPUTATIONAL METHODS IN MATERIALS SCIENCE</td>
<td></td>
</tr>
<tr>
<td>MATS 659</td>
<td>PRINCIPLES OF TRANSMISSION ELECTRON MICROSCOPY</td>
<td></td>
</tr>
<tr>
<td>OC 528</td>
<td>MICROPROBE ANALYSIS</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 18