SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Consistent with the mission of the university and college, the mission of the School of Electrical Engineering and Computer Science at Oregon State University is to provide a comprehensive, state-of-the-art education that prepares our students to be successful in engineering and computing practice and advanced studies.

The school has traditionally strong undergraduate programs and one of the largest graduate programs within the university, with internationally recognized research programs in the areas of mixed signal integration, artificial intelligence and machine learning, computer graphics and vision, energy systems, multimedia and networking, materials and devices, end-user software, human-computer interaction, and signal processing and communications systems.

Electrical and Computer Engineering

The School of EECS offers programs leading to the BS, MS, MEng, and PhD degrees in Electrical and Computer Engineering (ECE). Electrical and computer engineers engage in the design, construction and programming, and applications of electronic and integrated circuits, digital computers and embedded systems, power generation and utilization, communication and computer networks, electronic materials and devices, electromagnetic, microwave and optical circuits and systems, control systems, and signal processing and conditioning. Course work leading to the BS degree consists of courses in many of these topics, as well as courses in the supporting disciplines of mathematics, physical sciences, and computer science. Students select further study beyond the required courses for either more depth in a subdiscipline or further breadth across engineering. Students fulfill humanities and social science requirements as specified by the university's baccalaureate core program. The BS program is supported by well-equipped laboratories providing hands-on experience with electronic circuits, digital logic, electronic and photonic materials, electric machines, IC design, optoelectronics, RF techniques, instrumentation, and microprocessors.

The program incorporates engineering design principles throughout the undergraduate curriculum. This includes the integration of societal, economic, legal, regulatory, ethical, environmental, and other factors into the technical aspects of engineering design. Design activities begin in the freshman orientation sequence, which incorporates open-ended design problems, and continues throughout the curriculum. The design experience culminates with a yearlong senior design project. Within the senior design experience, students working in teams complete all phases of a design project under the supervision of a faculty member.

Graduates of this program are prepared to either seek industrial employment or pursue advanced graduate degrees.

The BS degree in Electrical and Computer Engineering (ECE) is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone 410-347-7700.

The Electrical and Computer Engineering graduate program provides opportunities for both MS and PhD thesis programs and a MEng course work-based program in the following areas: analog and mixed signals, communications and signal processing, computer systems and networking, energy systems, materials and devices, and RF/microwave optoelectronics. Graduate work is supported by the school's well-equipped laboratory facilities. Opportunities exist for graduate students to participate in many research projects sponsored by private industry and government agencies.

The School of Electrical and Computer Science faculty, advising procedures, undergraduate programs' educational objectives, graduate program application procedures, research areas, and many other aspects may be found at the school's website: http://eecs.oregonstate.edu/.

The Multiple Engineering Cooperative Program (MECOP) offers industrial internships to selected students in the discipline areas of computer science, electrical engineering, and computer engineering.

Computer Science

The School of EECS offers programs leading to BA, BS, MA, MAIS, MEng, MS, and PhD degrees in Computer Science (CS). Computer science is the heart of cutting-edge computing software. Computer scientists invent software that enables computers to do new things. They design programming languages, compilers, operating systems, games, databases, computer networks, and user interfaces. They solve complex challenging problems in a wide range of fields that can make a positive difference in the world.

Computer science major learn skills to create realistic graphics, design new problem-solving tools that anyone can use, and create new solutions for business, medical diagnoses, games and entertainment. Their programming skills enable computers to “learn” as they process data, as well as assist in social communication and technologies for the disadvantaged.

Computer science offers a foundation that permits graduates to learn how to make software work well, how to make it fast, how to make it correct, how to find where innovation is needed, and how to understand the people who will be using it, so as to make it genuinely useful and compelling to people. Much of computer science course work is carried out in teams, and students gain experience in teamwork, in professionalism in writing, in working with clients, and in making presentations of their teams’ efforts.

Course work leading to the BS degree consists of required courses in many of these topics, as well as courses in supporting disciplines such as mathematics. The BS program is supported by well-equipped computer laboratories. Students select further study beyond the required core courses, opting for either more depth in computer science, for breadth in business and entrepreneurship, or for grounding in an applications area for their computing skills. The BS program culminates with a yearlong senior capstone project. Within the senior capstone experience, students working in teams complete all phases of a software project under the supervision of a faculty member.

Graduates of this program are prepared either to pursue advanced graduate degrees or to seek employment in business, industry or government.

The BS degree in Computer Science (CS) with Computer Systems option is accredited by Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone 410-347-7700. The BA degree is not ABET accredited.
The computer science graduate program provides opportunities for MS and PhD thesis, MS non-thesis, and MEng course work-based programs in the following areas: artificial intelligence and machine learning, computer systems and networking, graphics and visualization, human-computer interaction, programming languages, software engineering, algorithms. Graduate work is supported by the school’s well-equipped laboratory facilities. Opportunities exist for graduate students to participate in many research projects sponsored by private industry and government agencies.

The School of Electrical and Computer Science faculty, advising procedures, undergraduate programs’ educational objectives, graduate program application procedures, research areas, and many other aspects may be found at the school’s website: http://eecs.oregonstate.edu/.

The Multiple Engineering Cooperative Program (MECOP) offers internships to selected students in the discipline areas of computer science, electrical engineering, and computer engineering.

Undergraduate Programs

Majors

- Computer Science [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/computer-science-ba-bs-bsa-bsb-hbs)
- Pre-Computer Science [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/pre-computer-science)

Options

- Applied Computer Science
- Computer Science Double Degree
- Computer Systems

- Electrical and Computer Engineering [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/electrical-computer-engineering-graduate-minor)
- Pre-Electrical and Computer Engineering [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/pre-electrical-computer-engineering)

Minor

- Computer Science [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/computer-science-minor)

Graduate Programs

Majors

- Computer Science [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/computer-science-ma-meng-ms-phd-mais)
- Electrical and Computer Engineering [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/electrical-computer-engineering-meng-ms-phd)

Minors

- Computer Science [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/computer-science-graduate-minor)

- Electrical and Computer Engineering [Element](http://catalog.oregonstate.edu/college-departments/engineering/school-electrical-engineering-computer-science/electrical-computer-engineering-graduate-minor)

Tom Weller, School Head
1148 Kelley Engineering Center
Oregon State University
Corvallis, OR 97331-5501
541-737-3617
Website: http://eecs.oregonstate.edu/

Faculty

Distinguished Professor Dietterich

Professors Adams, Allstot, Bailey, Bose, Brekken, Burnett, Conley, Cull (Emeritus), Dhangat, Erwig, A. Fern, Hamadaoui, Lee, Liu, Mathews, Mayaram, Moon, Nguyen, Pancake (Emeritus), Tadepallii, Temes, Wagner (Emeritus), Weller, Weissshaar, E. Zhang

Associate Professors Borradaile, Budd (Emeritus), Chiang, Cotilla-Sanchez, de Amicis, Dig, X. Fern, Jander, Jensen, Magaña, Minoura (Emeritus), Natarajan, Plant (Emeritus), Raich, Sarma, Scaffidi, Todorovic, Wang, Wong

Assistant Professors T. Anand, Bobba, Cao, L. Chen, Cheng, Fu, Hendrix, L. Huang, Hutchinson, Jang, Johnston, Kim, Knight, Labram, F. Li, Natarajan, Nayyeri, Parham-Mocello, Ramsey, Rosulek, Termehchy, Walkingshaw

Senior Instructor Taylor, McGrath

Instructors Alcon, Bakos, Brewster, Cate, Ehsan, Goins, Redfield, Rooker, Schufoft, Shuman, Sweet, Van Londen, Winters, Wolford, L. Zhang

Faculty Research Assistant 1 Heer, Irvine

Associate Professor Senior Research Y. Zhang

Computer Science

CS 101. COMPUTERS: APPLICATIONS AND IMPLICATIONS. (4 Credits)

The varieties of computer hardware and software. The effects, positive and negative, of computers on human lives. Ethical implications of information technology. Hands-on experience with a variety of computer applications. Lec/lab.

CS 151. INTRODUCTION TO PROGRAMMING I WITH EMBEDDED CONTROL LAB. (4 Credits)

Thorough treatment of the basic elements of C, bitwise operations, flow of control, input/output, functions, arrays, strings, and structures. Lec/lab. CROSSLISTED as ECE 151.

Prerequisites: MTH 111 with C or better or MTH 112 with C or better or MTH 251 with C or better or MTH 251H with C or better

CS 160. COMPUTER SCIENCE ORIENTATION. (3 Credits)

Introduction to the computer science field and profession. Team problem solving. Introduction to writing computer programs. Approaches to teaching course topics vary across sections. Lec/lab.

Equivalent to: CS 160H

CS 160H. COMPUTER SCIENCE ORIENTATION. (3 Credits)

Introduction to the computer science field and profession. Team problem solving. Introduction to writing computer programs. Approaches to teaching course topics vary across sections. Lec/lab.

Attributes: HNRS – Honors Course Designator

Equivalent to: CS 160
CS 161. INTRODUCTION TO COMPUTER SCIENCE I. (4 Credits)
Overview of fundamental concepts of computer science. Introduction to problem solving, software engineering, and object-oriented programming. Includes algorithm design and program development. Lec/lab/rec.
Prerequisites: MTH 112 (may be taken concurrently) with C or better or Math Placement Test with a score of 33 or Math Placement - ALEKS with a score of 061
CS 162. INTRODUCTION TO COMPUTER SCIENCE II. (4 Credits)
Basic data structures. Computer programming techniques and application of software engineering principles. Introduction to analysis of programs. Lec/lab/rec.
Prerequisites: CS 161 with C or better or EECS 161 with C or better
CS 165. ACCELERATED INTRODUCTION TO COMPUTER SCIENCE. (8 Credits)
Overview of the fundamental concepts of computer science. Introduction to problem solving, algorithm development, data types, and basic data structures. Introduction to analysis of algorithms and principles of software engineering. System development and computer programming using procedural/object-oriented paradigms. Offered via Ecampus only.
Prerequisites: MTH 112 with C or better or Math Placement - ALEKS with a score of 075
CS 175. *COMMUNICATIONS SECURITY AND SOCIAL MOVEMENTS. (3 Credits)
Equipping students with the theory and practice of communications security; this course explores how social movements can remain effective in the context of mass surveillance and state repression. Lec/rec. (Bacc Core Course)
Attributes: CPDP – Core, Perspective, Difference/Power/Discrimination
CS 195. WEBSITE DESIGN. (4 Credits)
How to design and publish a static website using an existing publishing platform: Techniques and tools for designing and publishing on the World Wide Web; hypertext and HTML; site and page design; media integration; issues raised by Internet publishing.
CS 199. SPECIAL TOPICS/COMPUTER SCIENCE. (1-16 Credits)
This course is repeatable for 16 credits.
CS 201. COMPUTER PROGRAMMING FOR NON-CS MAJORS. (3 Credits)
Covers a variety of fundamental topics in computer programming relevant to anyone who wants to write or work with computer code in their work or studies. Teaches basic computational thinking and programming skills which will allow students to solve a variety of real-world problems. In addition, students will learn more advanced topics such as how some basic algorithms work and can be written in computer code.
CS 225. DISCRETE STRUCTURES IN COMPUTER SCIENCE. (4 Credits)
An introduction to the discrete mathematics of computer science, including logic, set and set operations, methods of proof, recursive definitions, combinatorics, and graph theory. (Note: Students may take either MTH 231 or CS 225, but cannot receive credit for both.)
Prerequisites: MTH 111 with C or better or Math Placement Test with a score of 24 or Math Placement - ALEKS with a score of 061 or MTH 112 (may be taken concurrently) with C or better
CS 261. DATA STRUCTURES. (4 Credits)
Abstract data types, dynamic arrays, linked lists, trees and graphs, binary search trees, hash tables, storage management, complexity analysis of data structures. Lec/rec.
Prerequisites: (CS 162 with C or better or CS 165 with C or better) and (CS 225 [C] or MTH 231 [C])
CS 262. PROGRAMMING PROJECTS IN C++. (4 Credits)
Learning a second computer programming language. Elements of C ++. Object-oriented programming. Experience team work on a large programming project.
Prerequisites: CS 261 with C or better
CS 271. COMPUTER ARCHITECTURE AND ASSEMBLY LANGUAGE. (4 Credits)
Introduction to functional organization and operation of digital computers. Coverage of assembly language; addressing, stacks, argument passing, arithmetic operations, decisions, macros, modularization, linkers and debuggers.
Prerequisites: CS 151 with C or better or CS 161 with C or better or CS 165 with C or better or ECE 151 with C or better
CS 290. WEB DEVELOPMENT. (4 Credits)
How to design and implement a multi-tier application using web technologies: Creation of extensive custom client- and server-side code, consistent with achieving a high-quality software architecture.
Prerequisites: CS 162 with C or better or CS 165 with C or better
CS 295. WEBSITE MANAGEMENT. (4 Credits)
How to create and promote a dynamic website using existing frameworks/libraries: Designing, developing, publishing, maintaining, and marketing dynamic websites; web security and privacy issues; emerging web technologies; running a website marketing campaign.
Prerequisites: CS 195 with C or better
Recommended: Basic HTML and CSS
CS 312. SYSTEM ADMINISTRATION. (4 Credits)
Prerequisites: (CS 311 with C or better or CS 344 with C or better) and CS 372 [C]
CS 321. INTRODUCTION TO THEORY OF COMPUTATION. (3 Credits)
Survey of models of computation including finite automata, formal grammars, and Turing machines.
Prerequisites: CS 261 with C or better and (CS 225 [C] or MTH 231 [C])
Equivalent to: CS 321H
CS 321H. INTRODUCTION TO THEORY OF COMPUTATION. (3 Credits)
Survey of models of computation including finite automata, formal grammars, and Turing machines.
Attributes: HNRS – Honors Course Designator
Prerequisites: CS 261 with C or better and (CS 225 [C] or MTH 231 [C])
Equivalent to: CS 321
CS 325. ANALYSIS OF ALGORITHMS. (4 Credits)
Recurrence relations, combinatorics, recursive algorithms, proofs of correctness.
Prerequisites: CS 261 with C or better and (CS 225 [C] or MTH 231 [C])
Equivalent to: CS 325H
CS 325H. ANALYSIS OF ALGORITHMS. (4 Credits)
Recurrence relations, combinatorics, recursive algorithms, proofs of correctness.
Attributes: HNRS – Honors Course Designator
Prerequisites: CS 261 with C or better and (CS 225 [C] or MTH 231 [C])
Equivalent to: CS 325
CS 331. INTRODUCTION TO ARTIFICIAL INTELLIGENCE. (4 Credits)
Fundamental concepts in artificial intelligence using the unifying theme of an intelligent agent. Topics include agent architectures, search, games, logic and reasoning, and Bayesian networks.
Prerequisites: CS 325 with C or better or CS 325H with C or better
CS 340. INTRODUCTION TO DATABASES. (4 Credits)
Design and implementation of relational databases, including data
modeling with ER or UML, diagrams, relational schema, SQL queries,
relational algebra, user interfaces, and administration.
Prerequisites: CS 290 with C or better

CS 344. OPERATING SYSTEMS I. (4 Credits)
Introduction to operating systems using UNIX as the case study.
System calls and utilities, fundamentals of processes and interprocess
communication.
Prerequisites: CS 261 with C or better and (CS 271 [C] or ECE 271 [C])
Recommended: Experience programming in the C language

CS 352. INTRODUCTION TO USABILITY ENGINEERING. (4 Credits)
Basic principles of usability engineering methods for the design and
evaluation of software systems. Includes the study of human-machine
interactions, user interface characteristics and design strategies,
software evaluation methods, and related guidelines and standards.
Prerequisites: CS 151 with C or better or CS 161 with C or better or
CS 165 with C or better or CS 295 with C or better or ECE 151 with C or
better

CS 361. SOFTWARE ENGINEERING I. (4 Credits)
Introduction to the "front end" of the software engineering lifecycle;
requirements analysis and specification; design techniques; project
management.
Prerequisites: CS 261 with C or better

CS 362. SOFTWARE ENGINEERING II. (4 Credits)
Introduction to the "back end" of the software engineering lifecycle
implementation; verification and validation; debugging; maintenance.
Prerequisites: CS 261 with C or better
Recommended: Experience with object-oriented programming and data
structures (eg. CS 161, CS 162, CS 361)

CS 370. INTRODUCTION TO SECURITY. (4 Credits)
Introductory course on computer security with the objective to introduce
concepts and principles of computer systems security. Notions of
security, basic cryptograhic primitives and their application, basics of
authentication and access control, basics of key-management, basics of
malware and software security.
Prerequisites: CS 344 (may be taken concurrently) with C or better

CS 372. INTRODUCTION TO COMPUTER NETWORKS. (4 Credits)
Computer network principles, fundamental networking concepts, packet-
switching and circuit switching, TCP/IP protocol layers, reliable data
transfer, congestion control, flow control, packet forwarding and routing,
MAC addressing, multiple access techniques. Lec. CROSSLISTED as
ECE 372.
Prerequisites: CS 261 with C or better and (ECE 271 [C] or CS 271 [C])
Equivalent to: ECE 372
Recommended: C programming and Unix familiarity.

CS 373. DEFENSE AGAINST THE DARK ARTS. (4 Credits)
Introduction to the current state of the art in anti-malware, computer
forensics, and networking, messaging, and web security. Broad
introduction to the field of computer security.
Prerequisites: CS 344 with C or better and CS 340 [C] and CS 372 [C]

CS 381. PROGRAMMING LANGUAGE FUNDAMENTALS. (4 Credits)
An introduction to the concepts found in a variety of programming
languages. Programming languages as tools for problem solving. A brief
introduction to languages from a number of different paradigms.
Prerequisites: CS 261 with C or better and (CS 225 [C] or MTH 231 [C])

CS 391. *SOCIAL AND ETHICAL ISSUES IN COMPUTER SCIENCE. (3
Credits)
In-depth exploration of the social, psychological, political, and ethical
issues surrounding the computer industry and the evolving information
society. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society
Equivalent to: CS 391

CS 391H. *SOCIAL AND ETHICAL ISSUES IN COMPUTER SCIENCE. (3
Credits)
In-depth exploration of the social, psychological, political, and ethical
issues surrounding the computer industry and the evolving information
society. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society; HNRS
– Honors Course Designator
Equivalent to: CS 391

CS 395. WEBSITE MULTIMEDIA. (4 Credits)
How to create and deploy interactive digital multimedia through
static websites: Technological, aesthetic, and pedagogical issues of
communication using interactive multimedia and hypermedia; techniques
for authoring interactive multimedia projects using a variety of digital
media roots.
Prerequisites: CS 195 with C or better or (ART 120 with C or better and
(CS 162 [C] or CS 165 [C]))

CS 401. RESEARCH. (1-16 Credits)
Graded P/N.
This course is repeatable for 16 credits.

CS 403. THESIS. (1-16 Credits)
This course is repeatable for 16 credits.

CS 405. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

CS 406. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

CS 407. SEMINAR. (1-16 Credits)
Graded P/N.
Equivalent to: CS 407H
This course is repeatable for 16 credits.

CS 407H. SEMINAR. (1-16 Credits)
Graded P/N.
Attributes: HNRS – Honors Course Designator
Equivalent to: CS 407
This course is repeatable for 16 credits.

CS 410. OCCUPATIONAL INTERNSHIP. (1-16 Credits)
Graded P/N.
This course is repeatable for 16 credits.

CS 419. SELECTED TOPICS IN COMPUTER SCIENCE. (0-5 Credits)
Topics of special and current interest not covered in other courses.
Equivalent to: CS 419H
This course is repeatable for 99 credits.

CS 419H. SELECTED TOPICS IN COMPUTER SCIENCE. (1-5 Credits)
Topics of special and current interest not covered in other courses.
Attributes: HNRS – Honors Course Designator
Equivalent to: CS 419
This course is repeatable for 99 credits.
CS 420. GRAPH THEORY WITH APPLICATIONS TO COMPUTER SCIENCE. (3 Credits)
 Directed and undirected graphs; paths, circuits, trees, coloring, planar graphs, partitioning; computer representation of graphs and graph algorithms; applications in software complexity metrics, program testing, and compiling.
Prerequisites: (CS 325 with C or better or CS 325H with C or better)

CS 427. CRYPTOGRAPHY. (4 Credits)
Introduction to the theory and practice of modern cryptography. Fundamental primitives including pseudorandom generators, block ciphers, hash functions. Symmetric-key cryptography for privacy and authenticity. Public-key cryptography based on number-theoretic problems.
Prerequisites: CS 261 with C or better or MTH 355 with C or better

CS 434. MACHINE LEARNING AND DATA MINING. (4 Credits)
Introduction to machine learning and data mining algorithms (supervised learning, unsupervised learning, and reinforcement learning) tools that are widely employed in industrial and research settings.
Prerequisites: CS 325 with C or better or CS 325H with C or better

CS 440. DATABASE MANAGEMENT SYSTEMS. (4 Credits)
Relational database design, normalization, file structures, disk storage, query processing and optimization, team development of database applications.
Prerequisites: CS 261 with C or better and (CS 275 [C] or CS 340 [C])

CS 444. OPERATING SYSTEMS II. (4 Credits)
Principles of computer operating systems: concurrent processes, memory management, job scheduling, multiprocessing, file systems, performance evaluation, and networking. Lec/rec.
Prerequisites: (CS 311 with C or better or CS 344 with C or better) and (CS 271 [C] or ECE 375 [C])

CS 446. NETWORKS IN COMPUTATIONAL BIOLOGY. (3 Credits)
An introduction to biological networks and computational methods for their analysis, inference, and functional modeling. Various network centralities, topological measures, clustering algorithms, and probabilistic annotation models are introduced in the context of protein interaction, gene regulatory, and metabolic networks. The course also surveys bioinformatics methods for data-driven inference of network structure.
Prerequisites: CS 261 with C or better
Recommended: Completion or concurrent enrollment in CS 325

CS 447. WIRELESS EMBEDDED SYSTEMS. (4 Credits)
A hands-on introduction to programming wireless embedded systems (aka the "Internet of Things"). Topics include sensors, actuators, state machines, scheduling, wireless communications, time synchronization, localization, fault tolerance, and security related to cyber-physical systems.
Prerequisites: CS 344 with C or better

CS 450. INTRODUCTION TO COMPUTER GRAPHICS. (4 Credits)
Prerequisites: CS 261 with C or better and (MTH 306 [C] or MTH 306H [C] or MTH 341 [C])

CS 453. SCIENTIFIC VISUALIZATION. (4 Credits)
Applies 3D computer graphics methods to visually understand scientific and engineering data. Methods include hyperbolic projections; mapping scalar values to color spaces; data visualization using range sliders; scalar visualization (point clouds, cutting planes, contour plots, isosurfaces); vector visualization (arrow clouds, particle advection, streamlines); terrain visualization; Delauney triangulation; and volume visualization.
Recommended: Prior experience with Unix or Windows, programming experience.

CS 457. COMPUTER GRAPHICS SHADERS. (4 Credits)
Theoretical and practical treatment of computer graphics shaders, including both RenderMan and GPU shaders. Programming in both RenderMan and OpenGL shading languages.
Recommended: Previous graphics pipeline programming experience.

CS 458. INTRODUCTION TO INFORMATION VISUALIZATION. (4 Credits)
Tools and techniques for designing, developing, and deploying interactive visualizations of abstract data sources. Discusses techniques based on principles from design, cognitive science, and perceptual psychology. Topics include 1D, 2D, 3D, multivariate representations, time-series, graphs and trees, text and documents, and interaction techniques.
Prerequisites: CS 361 with C or better

CS 461. SENIOR SOFTWARE ENGINEERING PROJECT I. (3 Credits)
Utilize software engineering methodology in a team environment to develop a real-world application. Teams will be responsible for all phases of software development, including project planning, requirements analysis, design, coding, testing, configuration management, quality assurance, documentation, and delivery. Three-term sequence required. This course fulfills the WIC requirement for computer science majors. (Writing Intensive Courses).
Attributes: CWIC – Core, Skills, WIC
Prerequisites: CS 361 with C or better

CS 462. SENIOR SOFTWARE ENGINEERING PROJECT II. (3 Credits)
Utilize software engineering methodology in a team environment to develop a real-world application. Teams will be responsible for all phases of software development, including project planning, requirements analysis, design, coding, testing, configuration management, quality assurance, documentation, and delivery. Three-term sequence required. (Writing Intensive Courses)
Attributes: CWIC – Core, Skills, WIC
Prerequisites: CS 362 with C or better and CS 461 [C]

CS 463. SENIOR SOFTWARE ENGINEERING PROJECT. (2 Credits)
Utilize software engineering methodology in a team environment to develop a real-world application. Teams will be responsible for all phases of software development, including project planning, requirements analysis, design, coding, testing, configuration management, quality assurance, documentation, and delivery. Three-term sequence required. (Writing Intensive Courses)
Prerequisites: CS 462 with C or better

CS 464. OPEN SOURCE SOFTWARE. (4 Credits)
Provides a theoretical foundation of the history, key concepts, technologies, and practices associated with modern Free and Open Source Software (FOSS) projects, and gives students an opportunity to explore and make contributions to FOSS projects with some mentoring and guidance.
Prerequisites: CS 261 with C or better or CS 361 with C or better
CS 466. WEB-BASED START-UP PROJECT. (4 Credits)
Real-world, hands-on learning in a high-tech web/mobile-based company environment. Research in the development of product ideas, hypotheses, and business models to create customer experiments. Prototyping and statistical analysis to develop, optimize, and evaluate solutions. Rapid iteration/refactoring based on customer input, web analytics, and user engagement metrics. Offered at OSU-Cascades only.

Corequisites: CS 461

CS 467. ONLINE CAPSTONE PROJECT. (4 Credits)
Real-world team-based experience with the software engineering design and delivery cycle, including requirements analysis and specification, design techniques, and requirements and final project written documentation. For students in the online CS double-degree program only.

Prerequisites: CS 344 with C or better and CS 361 [C] and CS 362 [C]

CS 468. INCLUSIVE DESIGN (HCI). (4 Credits)
Inclusive design is designing software that works for a wide variety of differently abled customers. Teaches the skills needed to design inclusively without having to have a separate design for each differently abled customer.

Prerequisites: CS 352 with C or better
Recommended: CS 565 with a minimum grade of C

CS 472. COMPUTER ARCHITECTURE. (4 Credits)
Computer architecture using processors, memories, and I/O devices as building blocks. Issues involved in the design of instruction set architecture, processor, pipelining and memory organization. Design philosophies and trade-offs involved in Reduced Instruction Set Computer (RISC) architectures. Lec/lab. CROSSTLISTED as ECE 472/ECE 572.

Prerequisites: ECE 375 with C or better
Equivalent to: ECE 472

CS 475. INTRODUCTION TO PARALLEL PROGRAMMING. (4 Credits)
Theoretical and practical survey of parallel programming, including a discussion of parallel architectures, parallel programming paradigms, and parallel algorithms. Programming one or more parallel computers in a higher-level parallel language.

Prerequisites: CS 325 with C or better or CS 325H with C or better

CS 476. ADVANCED COMPUTER NETWORKING. (4 Credits)

Prerequisites: (CS 372 with C or better or ECE 372 with C or better) and (ECE 353 [C] or ST 314 [C] or ST 314H [C])

CS 477. INTRODUCTION TO DIGITAL FORENSICS. (4 Credits)
Introduces concepts related to digital forensics, its role and importance, and tools and techniques for collecting and curating digital evidence. The course will also discuss the role of evidence in the justice system and some legal aspects as they pertain to digital forensics. It will introduce tools and techniques for computer and network forensics.

Prerequisites: CS 344 with C or better and CS 370 [C]

CS 478. NETWORK SECURITY. (4 Credits)
Basic concepts and techniques in network security, risks and vulnerabilities, applied cryptography and various network security protocols. Coverage of high-level concepts such as authentication, confidentiality, integrity, and availability applied to networking systems. Fundamental techniques including authentication protocols, group key establishment and management, trusted intermediaries, public key infrastructures, SSL/TLS, IPSec, firewalls and intrusion detection CROSSTLISTED as ECE 478.

Prerequisites: CS 372 with C or better or ECE 372 with C or better
Equivalent to: ECE 478
Recommended: CS 370

CS 480. TRANSLATORS. (4 Credits)
An introduction to compilers; attribute grammars, syntax-directed translation, lex, yacc, LR(1) parsers, symbol tables, semantic analysis, and peep-hole optimization.

Prerequisites: (CS 344 with C or better or CS 311 with C or better) and CS 321 [C]

CS 491. COMPUTER SCIENCE SKILLS FOR SIMULATION AND GAME PROGRAMMING. (4 Credits)
Game and simulation development is very much a data and math-intensive activity. A certain number of actions must be produced, and producing them by hand is hard. This is a middleware CS course that fills in many of the missing pieces for those wanting to enter the simulation and game development worlds in a software tool-building capacity.

Prerequisites: CS 261 with C or better and (CS 225 [C] or MTH 231 [C]) and MTH 252 [C]

CS 492. MOBILE SOFTWARE DEVELOPMENT. (4 Credits)
Introduction to concepts and techniques for developing mobile applications. Students will become familiar with modern mobile structure, implementation, development tools, and workflow.

Prerequisites: CS 344 with C or better

CS 493. CLOUD APPLICATION DEVELOPMENT. (4 Credits)
Covers developing RESTful cloud services, an approach based on representational state transfer technology, an architectural style and approach to communications used in modern cloud services development.

Prerequisites: CS 290 with C or better and CS 340 [C] and CS 372 [C]

CS 495. INTERACTIVE MULTIMEDIA PROJECTS. (4 Credits)
Students apply principles and procedures of digital art, design, communication, and software authoring while working on large integrated media projects.

Recommended: CS 395

CS 496. MOBILE AND CLOUD SOFTWARE DEVELOPMENT. (4 Credits)
Introduction to the concepts and techniques for developing mobile and cloud applications.

Prerequisites: CS 344 with C or better or CS 311 with C or better

CS 499. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

CS 501. RESEARCH. (1-16 Credits)
Graded P/N.
This course is repeatable for 99 credits.

CS 503. COMPUTER SCIENCE MS THESIS. (1-16 Credits)
This course is repeatable for 99 credits.

CS 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 20 credits.
CS 506. PROJECTS. (1-16 Credits)
Graded P/N.
This course is repeatable for 99 credits.

CS 507. SEMINAR. (1-16 Credits)
Graded P/N.
This course is repeatable for 16 credits.

CS 511. PROGRAMMING AND DATA STRUCTURES. (4 Credits)
Computer programming, problem solving, data structures, object-oriented programming, recursion, sorting, dynamic programming, asymptotic time complexity.
Recommended: College algebra, plus the ability to navigate an operating system, manipulate files, and use a command line.

CS 512. DATA SCIENCE TOOLS AND PROGRAMMING. (4 Credits)
Accessing and distributing data in the cloud; relational and non-relational databases; map reduction; cloud data processing; load balancing; types of data-stores used in the cloud.
Recommended: CS 511 or an equivalent course or programming experience in a high-level language like Python, Java or C++.

CS 515. ALGORITHMS AND DATA STRUCTURES. (4 Credits)
Greedy algorithms, divide and conquer, dynamic programming, network flow, data structures.
Recommended: Undergraduate course in algorithms

CS 516. THEORY OF COMPUTATION AND FORMAL LANGUAGES. (4 Credits)

CS 517. THEORY OF COMPUTATION. (4 Credits)
Turing machines, decidability, NP-completeness, complexity classes, randomized computation, relativization, circuit complexity, interactive proof systems, lower bounds, cryptography.

CS 519. SELECTED TOPICS IN COMPUTER SCIENCE. (0-5 Credits)
Topics of special and current interest not covered in other courses. May not be offered every year.
This course is repeatable for 99 credits.

CS 520. GRAPH THEORY WITH APPLICATIONS TO COMPUTER SCIENCE. (3 Credits)
Directed and undirected graphs; paths, circuits, trees, coloring, planar graphs, partitioning; computer representation of graphs and graph algorithms; applications in software complexity metrics, program testing, and compiling.
Recommended: CS 325 and MTH 232

CS 521. COMPUTABILITY. (4 Credits)
Recommended: CS 516

CS 523. ADVANCED ALGORITHMS. (4 Credits)
Approximation algorithms, randomized and probabilistic algorithms, online algorithms.
Recommended: CS 515

CS 524. NP-COMPLETE AND HARDER PROBLEMS. (4 Credits)
Recommended: CS 523

CS 527. ERROR-CORRECTING CODES. (4 Credits)
Hamming codes, linear codes, cyclic codes, BCH and Reed-Solomon codes. Introduction to Galois fields. Encoding and decoding algorithms. Burst error correcting codes, asymmetric and unidirectional codes. Applications of codes for computer systems.
Recommended: Discrete math and probability

CS 529. SELECTED TOPICS IN THEORETICAL COMPUTER SCIENCE. (1-5 Credits)
Topics of interest in algorithms and theory of computation. Topics include approximation algorithms, planar graph algorithms, distributed algorithms, combinatorial optimization, computational geometry.
This course is repeatable for 99 credits.
Recommended: CS 515

CS 531. ARTIFICIAL INTELLIGENCE. (4 Credits)

CS 532. ADVANCED ARTIFICIAL INTELLIGENCE. (4 Credits)
Recommended: CS 531

CS 533. INTELLIGENT AGENTS AND DECISION MAKING. (4 Credits)
Recommended: CS 531

CS 534. MACHINE LEARNING. (4 Credits)

CS 535. DEEP LEARNING. (4 Credits)
Prerequisites: CS 534 with B or better

CS 536. PROBABILISTIC GRAPHICAL MODELS. (4 Credits)
Representation of probabilistic graphical models, both directed (Bayesian networks) and undirected (Markov networks). Exact and approximate inference techniques. Parameter and structure learning from data.
Recommended: Strong programming skills
CS 537. COMPUTER VISION I. (3 Credits)
An introduction to low-level computer vision and visual geometry. Topics of interest include the following: detection of interest points and edges, matching points and edges, color models, projective geometry, camera calibration, epipolar geometry, homography, image stitching, and multiframe tracking.
Recommended: Undergraduate-level statistics, probability, calculus, linear algebra, good programming skills, machine learning or AI

CS 539. SELECTED TOPICS IN ARTIFICIAL INTELLIGENCE. (1-5 Credits)
Advanced topics in artificial intelligence. Typical topics include machine learning for sequential and spatial data, knowledge representation and inference, probabilistic modeling of complex systems, data mining and information extraction.
This course is repeatable for 12 credits.

CS 540. DATABASE MANAGEMENT SYSTEMS. (4 Credits)
Purpose of database systems, levels of data representation. Entity-relationship model. Relational systems: data definition, data manipulation, query language (SQL), relational calculus and algebra, data dependencies and normal forms. DBTG network model. Query optimization, recovery, concurrency control.
Recommended: CS 261

CS 544. OPERATING SYSTEMS II. (4 Credits)
Principles of computer operating systems: concurrent processes, memory management, job scheduling, multiprocessing, file systems, performance evaluation, and networking. Lec/rec.
Recommended: (CS 311 or CS 344) and (CS 271 or ECE 375)

CS 546. NETWORKS IN COMPUTATIONAL BIOLOGY. (3 Credits)
An introduction to biological networks and computational methods for their analysis, inference, and functional modeling. Various network centralities, topological measures, clustering algorithms, and probabilistic annotation models are introduced in the context of protein interaction, gene regulatory, and metabolic networks. The course also surveys bioinformatics methods for data-driven inference of network structure.
Recommended: Completion or concurrent enrollment in CS 325

CS 549. SELECTED TOPICS IN INFORMATION-BASED SYSTEMS. (1-5 Credits)
Current topics in information-based systems, e.g. information management for CAD, geographical information systems, distributed information systems, data models for complex applications.
This course is repeatable for 99 credits.
Recommended: CS 540

CS 550. INTRODUCTION TO COMPUTER GRAPHICS. (4 Credits)
Recommended: CS 261 and (MTH 306 or MTH 306H or MTH 341)

CS 551. COMPUTER GRAPHICS. (4 Credits)
3-D graphics hardware: Line and polygon scan conversion, modeling transformations, viewing transformations, matrix stacks, hierarchical models, perspective and orthographic projections, visible surface determination, illumination models, shading models, texture mapping, ray tracing.
Recommended: CS 450 or CS 550

CS 552. COMPUTER ANIMATION. (4 Credits)
Traditional animation concepts: production pipeline, keyframing implementation, interpolation, point-mass dynamics, spring-mass systems, rigid body dynamics, forward and inverse kinematics, human motion control, motion capture.
Recommended: CS 551

CS 553. SCIENTIFIC VISUALIZATION. (4 Credits)
Applies 3D computer graphics methods to visually understand scientific and engineering data. Methods include hyperbolic projections; mapping scalar values to color spaces; data visualization using range sliders; scalar visualization (point clouds, cutting planes, contour plots, isosurfaces); vector visualization (arrow clouds, particle advection, streamlines); terrain visualization; Delauney triangulation; and volume visualization.
Recommended: Prior experience with Unix or Windows, programming experience.

CS 554. GEOMETRIC MODELING IN COMPUTER GRAPHICS. (4 Credits)
Advanced topics in computer graphics focusing on representation and processing of polygonal models and their application. Surface fundamentals; discrete differential geometry and topology; data structures for representing 3-D surfaces; surface subdivision and smoothing; mesh simplification and multi-resolution representation of 3-D surfaces; geometry compression; surface parameterization; geometry remeshing; topological simplification; implicit surfaces.
Recommended: CS 450

CS 555. SIGNAL AND IMAGE PROCESSING. (4 Credits)
Fundamental aspects of signal and image processing including image acquisition and display, histograms, level-set and geometric operations, convolutions, Fourier transform, image filtering, sampling theory, image transforms, human vision, color, morphological operations, and image compression.
Recommended: Knowledge of C/C++

CS 556. COMPUTER VISION. (4 Credits)
Algorithm development for automatic interpretation of the three-dimensional world that is captured in a set of images; cameras and image formation; color; keypoint and edge detection; perceptual grouping; segmentation; shape representation; texture; object recognition; optical flow; motion estimation and tracking; and 3-D scene reconstruction from motion and stereo.
Recommended: Basic statistics, probability, calculus, linear algebra, good programming skills, machine learning or AI

CS 557. COMPUTER GRAPHICS SHADERS. (4 Credits)
Theoretical and practical treatment of computer graphics shaders, including both RenderMan and GPU shaders. Programming in both RenderMan and OpenGL shading languages.
Recommended: Previous graphics pipeline programming experience.

CS 559. SELECTED TOPICS IN COMPUTER GRAPHICS AND VISION. (1-5 Credits)
Advanced topics in graphics, animation, and vision. Topics include distribution ray tracing, global-illumination, radiosity, image-based modeling and rendering, vision-assisted image and video editing, 3-D vision, 3-D virtual environments, 3-D interaction, control for physical simulation, motion graphs, computational geometry, etc.
This course is repeatable for 12 credits.

CS 560. DATA-DRIVEN SOFTWARE ENGINEERING. (4 Credits)
An overview of data-driven empirical research methods that can be used to understand the different aspects of software engineering.
Prerequisites: CS 561 with C or better
CS 561. SOFTWARE ENGINEERING METHODS. (4 Credits)
Master software engineering methods and supporting tools in the context of agile processes. Teams will engage in all aspects of software development including design, testing, implementation, deployment and maintenance. 3 hours of lecture per week plus one-hour independent lab per week.
Recommended: CS 362

CS 562. SOFTWARE PROJECT MANAGEMENT. (4 Credits)
Master software project management with an emphasis on timely, cost-effective delivery of high-quality systems. Learn about existing techniques and supporting tools, with a particular focus on coordination and project management. 3 hours of lecture per week plus one-hour independent lab per week.
Recommended: CS 561

CS 563. SOFTWARE MAINTENANCE AND EVOLUTION. (4 Credits)
Contribute to the cutting-edge of software engineering. Learn about existing techniques and supporting tools, with a particular focus on maintenance and evolution. Identify opportunities to support software maintenance and evolution more effectively, by creating new knowledge and supporting systems through research and innovation. 3 hours of lecture per week plus one-hour independent lab per week.
Prerequisites: CS 561 with C or better

CS 564. FIELD STUDIES IN SE AND HCI. (4 Credits)
Deals with the type of empirical study known as the "case" study. These are studies that collect data from natural software development situations as they really occur in the field, in which the researcher does not manipulate or "control" anything. The course is an end-to-end coverage of the process. Mainly focuses on case studies involving human software developers in the field. The student will conduct a field study as part of this course.

CS 565. HUMAN-COMPUTER INTERACTION. (4 Credits)
Basic principles of Human-Computer Interaction (HCI) for the design and evaluation of software systems. Includes research methods for studying human-machine interactions and user interfaces, design strategies, software evaluation methods, and related guidelines and standards.

CS 567. LABORATORY STUDIES IN SE AND HCI. (4 Credits)
Empirical lab studies of software development. Covers how to go about designing, preparing for, running, analyzing, and writing-for-publication lab experiments of programming situations involving human subjects. This is an end-to-end coverage of the entire process, and will put students in a position to conduct lab studies of their own with human subjects.

CS 568. INCLUSIVE DESIGN (HCL). (4 Credits)
Inclusive design is designing software that works for a wide variety of differently abled customers. Teaches the skills needed to design inclusively without having to have a separate design for each differently abled customer.
Recommended: CS 352 [C] or CS 565 [C]

CS 569. SELECTED TOPICS IN SOFTWARE ENGINEERING. (1-5 Credits)
Topics include new programming methodologies, productivity, software development, software complexity metrics. This course is repeatable for 99 credits.
Recommended: CS 561

CS 570. HIGH PERFORMANCE COMPUTER ARCHITECTURE. (4 Credits)
Advanced concepts in computer architecture. Performance improvement employing advanced pipelining and multiple instruction scheduling techniques. Issues in memory hierarchy and management. CROSSLISTED as ECE 570.
Equivalent to: ECE 570
Recommended: ECE 472 or ECE 572

CS 572. COMPUTER ARCHITECTURE. (4 Credits)
Computer architecture using processors, memories, and I/O devices as building blocks. Issues involved in the design of instruction set architecture, processor, pipelining and memory organization. Design philosophies and trade-offs involved in Reduced Instruction Set Computer (RISC) architectures. Lec/lab. CROSSLISTED as ECE 472/ECE 572.
Equivalent to: ECE 572
Recommended: ECE 375

CS 575. INTRODUCTION TO PARALLEL PROGRAMMING. (4 Credits)
Theoretical and practical survey of parallel programming, including a discussion of parallel architecture, parallel programming paradigms, and parallel algorithms. Programming one or more parallel computers in a higher-level parallel language.

CS 576. ADVANCED COMPUTER NETWORKING. (4 Credits)
Equivalent to: ECE 576
Recommended: (CS 372 or ECE 372) and (ECE 353 or ST 314 or ST 314H)

CS 578. CYBER-SECURITY. (4 Credits)
A broad overview of the field of computer and network security. Essential cryptographic mechanisms such as symmetric and public-key cryptography (e.g., encryption, signatures), network security and authentication protocols (e.g., Kerberos, TLS, IPSec), system security (e.g., access control, firewalls), advanced topics (e.g., searchable encryption, cloud security, secure computation). CROSSLISTED as ECE 578.
Equivalent to: ECE 578

CS 579. TOPICS IN COMPUTER ARCHITECTURE AND PARALLEL PROCESSING. (1-5 Credits)
Current topics in advanced computer architecture and parallel processing. This course is repeatable for 99 credits.
Recommended: CS 575 or CS 572 or ECE 572

CS 581. PROGRAMMING LANGUAGES I. (4 Credits)
Graduate-level introduction to functional programming and programming language theory. Strongly typed functional programming in Haskell, abstract syntax and grammars, interpreters, denotational semantics, domain theory, and lambda calculus.

CS 582. PROGRAMMING LANGUAGES II. (4 Credits)
Essentials of programming language theory for understanding and conducting programming language research. Dependently typed programming in Agda, Coq, or Idris; operational semantics; type systems; unification and type inference.
Prerequisites: CS 581 with C or better
CS 583. ADVANCED FUNCTIONAL PROGRAMMING. (4 Credits)
Advanced functional programming concepts and strategies, with a focus on techniques useful for the design and implementation of programming languages. Includes higher-order abstract syntax, functors and monads, generalized algebraic data types, functional data structures, and graph reduction.
Prerequisites: CS 581 with C or better

CS 584. HUMAN FACTORS PROGRAMMING LANGUAGES. (4 Credits)
Principles and evaluation methods for designing and evaluating programming languages to emphasize human productivity. Overall goals are (a) to enable students to understand and apply these principles and methods, and (b) to introduce at least four programming languages that aim specifically at supporting human problem solving.

CS 585. DOMAIN-SPECIFIC LANGUAGES. (4 Credits)
Graduate-level introduction to the design and implementation of domain-specific languages (DSLs). Domain analysis; review and revision of language designs; binding constructs to support abstraction; definition of syntax and semantics of DSLs; prototype implementation of embedded DSL.
Prerequisites: CS 581 with C or better

CS 589. SELECTED TOPICS IN PROGRAMMING LANGUAGES. (1-5 Credits)
An in-depth examination of a specific topic of interest in programming language design and implementation. Example topics include object-oriented programming, parallel programming, compiler optimization, programming language semantics.
This course is repeatable for 99 credits.

CS 599. SPECIAL TOPICS. (1-16 Credits)
This course is repeatable for 16 credits.

CS 601. RESEARCH. (1-16 Credits)
Graded P/N.
This course is repeatable for 99 credits.

CS 603. COMPUTER SCIENCE PHD THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

CS 605. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

CS 607. SEMINAR. (1-16 Credits)
This course is repeatable for 16 credits.

CS 637. COMPUTER VISION II. (4 Credits)
An introduction to recent advances in visual recognition, including object detection, semantic segmentation, multimodal parsing of images and text, image captioning, face recognition, and human activity recognition. The course covers common formulations of these problems, including energy minimization on graphical models, and supervised machine learning approaches to low- and high-level recognition tasks.
Prerequisites: CS 535 with B+ or better or CS 537 with B- or better
Recommended: CS 519

Electrical and Computer Engineering

ECE 112. INTRODUCTION TO ECE: CONCEPTS. (3 Credits)
Basic electrical and computer engineering concepts, problem solving and hands-on laboratory project. Topics include electronic circuit and device models, digital logic, circuit analysis, and simulation tools. Lec/lab. Has extra fees.
Prerequisites: MTH 111 with C or better or MTH 112 with C or better or MTH 251 with C or better or MTH 251H with C or better or Math Placement Test with a score of 23

ECE 199. SPECIAL STUDIES. (0-16 Credits)
One-credit section. Graded P/N.
This course is repeatable for 16 credits.

ECE 271. DIGITAL LOGIC DESIGN. (3 Credits)
A first course in digital logic design. Data types and representations, Boolean algebra, state machines, simplification of switching expressions, and introductory computer arithmetic. Lec/rec.
Prerequisites: MTH 251 (may be taken concurrently) with C or better or MTH 251H (may be taken concurrently) with C or better or MTH 231 (may be taken concurrently) with C or better

ECE 272. DIGITAL LOGIC DESIGN LABORATORY. (1 Credit)
This laboratory course accompanies ECE 271, Digital Logic Design. This also illustrates topics covered in the lectures of ECE 271 using computer-aided design, verification tools, and prototyping hardware.
Recommended: Completion or concurrent enrollment in ECE 271

ECE 322. ELECTRONICS I. (3 Credits)
Fundamental device characteristics including diodes, MOSFETs and bipolar transistors; small- and large-signal characteristics and design of linear circuits.
Prerequisites: ENGR 203 with C or better
Equivalent to: ECE 322H

ECE 322H. ELECTRONICS I. (3 Credits)
Fundamental device characteristics including diodes, MOSFETs and bipolar transistors; small- and large-signal characteristics and design of linear circuits.
Attributes: HNRS – Honors Course Designator
Prerequisites: ENGR 203 with C- or better
Equivalent to: ECE 322

ECE 332. ELECTRONICS II. (3 Credits)
Transient operation of MOSFETs and bipolar transistors; multistage amplifiers; frequency response; feedback and stability.
Prerequisites: ECE 322 with C or better

ECE 331. ELECTROMECHANICAL ENERGY CONVERSION. (4 Credits)
Energy conversion principles for electric motors. Steady-state characteristics and analysis of induction, synchronous and direct machines. Lec/lab.
Prerequisites: ENGR 202 with C or better or ENGR 202H with C or better

ECE 332. LABORATORY ON ELECTROMECHANICAL ENERGY CONVERSION. (1 Credit)
DC, PMAC, and induction machine testing, operation, and control.
Prerequisites: ENGR 202 with C or better or ENGR 202H with C or better
Corequisites: ECE 331

ECE 341. JUNIOR DESIGN I. (3 Credits)
Introduction to system design and group projects. Design and fabrication of an electrical engineering project in a small group.
Prerequisites: CS 261 (may be taken concurrently) with C or better and ENGR 203 [C]
ECE 342. JUNIOR DESIGN II. (3 Credits)
Introduction to system design and group projects. Design and fabrication of an electrical engineering project in a small group.
Prerequisites: ECE 341 with C or better

ECE 351. SIGNALS AND SYSTEMS I. (3 Credits)
Analytical techniques for continuous-time and discrete-time signal, system, and circuit analysis. Lec.
Prerequisites: ENGR 203 with C or better and (MTH 256 [C] or MTH 256H [C])

ECE 352. SIGNALS AND SYSTEMS II. (3 Credits)
Analytical techniques for continuous-time and discrete-time signal, system, and circuit analysis.
Prerequisites: ECE 351 with C or better and (MTH 306 [C] or MTH 306H [C])

ECE 353. INTRODUCTION TO PROBABILITY AND RANDOM SIGNALS. (3 Credits)
Introductory discrete and continuous probability concepts, single and multiple random variable distributions, expectation, introductory stochastic processes, correlation and power spectral density properties of random signals, random signals through linear filters. Lec.
Prerequisites: ECE 351 with C or better and (MTH 254 [C] or MTH 254H [C])

ECE 372. INTRODUCTION TO COMPUTER NETWORKS. (4 Credits)
Computer network principles, fundamental networking concepts, packet-switching and circuit-switching, TCP/IP protocol layers, reliable data transfer, congestion control, flow control, packet forwarding and routing, MAC addressing, multiple access techniques. Lec. CROSSLISTED as CS 372.
Prerequisites: CS 261 with C or better and (ECE 271 [C] or CS 271 [C])
Equivalent to: CS 372
Recommended: C programming and Unix familiarity.

ECE 375. COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING. (4 Credits)
Introduction to computer organization, how major components in a computer system function together in executing a program, and assembly language programming. Lec/lab.
Prerequisites: ECE 271 with C or better
Recommended: CS 261 or C/C++ programming

ECE 390. ELECTRIC AND MAGNETIC FIELDS. (4 Credits)
Static and quasi-static electric and magnetic fields.
Prerequisites: (MTH 255 with C or better or MTH 255H with C or better) and ENGR 203 (may be taken concurrently) [C]

ECE 391. TRANSMISSION LINES. (3 Credits)
Transient and steady-state analysis of transmission line circuits with application to engineering problems.
Prerequisites: ECE 322 (may be taken concurrently) with C or better and ENGR 203 [C] and (MTH 254 [C] or MTH 254H [C]) and (MTH 256 [C] or MTH 256H [C])

ECE 399. SPECIAL TOPICS. (1-16 Credits)
Course work to meet students' needs in advanced or specialized areas and to introduce new, important topics in electrical and computer engineering at the undergraduate (junior/senior) level. This course is repeatable for 16 credits.

ECE 401. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 403. THESIS. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 405. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 406. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 410. INTERNSHIP. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 411. ENGINEERING MAGNETICS. (3 Credits)
Application of magnetic materials in the design of magnetic devices. Properties of magnetic materials; engineering design of actuators, sensors and data storage devices. Introduction to spintronics.
Prerequisites: ECE 390 with C or better

ECE 413. SENSORS. (3 Credits)
Overview of sensor technologies including materials, physics of operation, applications and system integration.
Prerequisites: ECE 322 with C or better and ECE 323 [C]

ECE 415. MATERIAL SCIENCE OF NANOTECHNOLOGY. (3 Credits)
Introductory physical chemistry of solid surfaces, thermodynamics, and kinetics applied to synthesis of nanomaterials such as nanoparticles, nanowires, thin films, carbon nanotubes, fullerenes, graphene, etc. Characterization of nanomaterials, applications of nanomaterials, nano-synthesis techniques, integration of nanotechnology, and emerging nanotechnology topics.
Prerequisites: ECE 416 with C or better or ENGR 321 with C or better or ENGR 321H with C or better

ECE 416. ELECTRONIC MATERIALS AND DEVICES. (4 Credits)
Semiconductor fundamentals and physical principles of pn junctions and Schottky barrier diodes.
Prerequisites: ENGR 201 with C or better

ECE 417. BASIC SEMICONDUCTOR DEVICES. (4 Credits)
Theory and physical principles of bipolar junction and field-effect transistors. Lec/rec.
Prerequisites: ECE 416 with C or better

ECE 418. SEMICONDUCTOR PROCESSING. (4 Credits)
Theory and practice of basic semiconductor processing techniques. Introduction to process simulation. Lec/lab/rec.
Prerequisites: ECE 416 with C or better

ECE 422. CMOS INTEGRATED CIRCUITS I. (4 Credits)
Analysis and design of analog integrated circuits in CMOS technology; current mirrors, gain stages, single-ended operational amplifier, frequency response, and compensation.
Prerequisites: ECE 322 with C or better and ECE 323 (may be taken concurrently) [C]

ECE 423. CMOS INTEGRATED CIRCUITS II. (4 Credits)
Analysis and design of analog integrated circuits in CMOS technology; cascaded current mirrors, cascaded gain stages, single-ended and fully differential operational amplifier, common-mode feedback, noise, and distortion. Lec/lab.
Prerequisites: ECE 422 with C or better

ECE 431. POWER ELECTRONICS. (4 Credits)
Fundamentals and applications of devices, circuits and controllers used in systems for electronic power processing. Lec/lab.
Prerequisites: ECE 322 with C or better and ECE 323 (may be taken concurrently) [C] and ECE 351 [C]
ECE 432. DYNAMICS OF ELECTROMECHANICAL ENERGY CONVERSION. (4 Credits)
Generalized machine theory. Techniques for dynamic analysis of
electromechanical machines including arbitrary reference frame theory.
Lec/lab.
Prerequisites: ECE 331 with C or better
Corequisites: ECE 431

ECE 433. POWER SYSTEM ANALYSIS. (4 Credits)
Fundamentals and control of real and reactive power, steady-state load
flow studies, unbalance, stability and transient system analysis.
Prerequisites: ECE 323 with C or better and ECE 352 [C]
Recommended: Three-phase power

ECE 437. SMART GRID. (3 Credits)
Fundamentals of smart power grids. Technology advances in
transmission and distribution systems, policy drivers, assets and demand
management, and smart grid security.
Prerequisites: ECE 433 with C or better
Recommended: Background in power systems analysis equivalent to
ECE 433

ECE 438. ELECTRIC AND HYBRID ELECTRIC VEHICLES. (4 Credits)
Transportation electrification history, hybrid electric vehicle architecture,
powertrain components and their modeling and control, vehicle system
dynamics and controls.
Prerequisites: ECE 331 with C or better and ECE 431 [C]

ECE 441. *ENGINEERING DESIGN PROJECT. (3 Credits)
First term of an extended, 3-term team design project to expose students
to problem situations and issues in engineering design similar to those
encountered in industry. (Writing Intensive Courses)
Attributes: CWIC — Core, Skills, WIC
Prerequisites: ECE 322 with C or better and ECE 351 [C]

ECE 442. *ENGINEERING DESIGN PROJECT. (3 Credits)
Second term of an extended, 3-term team design project to expose
students to problem situations and issues in engineering design similar
to those encountered in industry. (Writing Intensive Courses)
Attributes: CWIC — Core, Skills, WIC
Prerequisites: ECE 441 with C or better

ECE 443. *ENGINEERING DESIGN PROJECT. (2 Credits)
An extended team design project to expose students to problem
situations and issues in engineering design similar to those encountered
in industry. (Writing Intensive Courses)
Attributes: CWIC — Core, Skills, WIC
Prerequisites: ECE 442 with C or better

ECE 451. SYSTEMS DYNAMICS AND CONTROL. (4 Credits)
Modeling and analysis of linear continuous systems in time and
frequency domains. Fundamentals of single-input-single-output control
system design. CROSSLISTED as ME 430.
Prerequisites: (ME 317 with C or better or (ECE 351 with C or better and
ECE 352 [C] and (ENGR 212 [C] or ENGR 212H [CI])))
Equivalent to: ME 430

ECE 461. INTRODUCTION TO ANALOG AND DIGITAL COMMUNICATIONS. (4 Credits)
Fundamental concepts of analog and digital telecommunication systems:
modeling, analysis, and design of analog amplitude and angle modulation
systems; probabilistic performance assessment of modulated signals
over noisy channels; introduction to baseband digital modulation
techniques such as binary pulse amplitude modulation and pulse position
modulation and their demodulation in the presence of random noise. Lec.
Prerequisites: ECE 351 with C or better and ECE 352 [C] and ECE 353 [C]

ECE 462. DIGITAL COMMUNICATIONS AND CHANNEL CODING. (4 Credits)
Modeling, analysis, design of baseband and passband digital
communications systems: geometric representation of signals; correlator
receivers for M-ary digital communications systems; decision theory
and its application to digital communication systems in additive white
Gaussian noise environment; generation, transmission, and reception of
passband digital modulated signals (BPSK, QPSK, FSK PAM); basics of
information theory and channel encoding. Lec.
Prerequisites: ECE 461 with C or better and ECE 351 [C] and ECE 352 [C]
and ECE 353 [C]

ECE 463. WIRELESS COMMUNICATIONS NETWORK. (4 Credits)
Wireless networks: personal area (IEEE 802.15.4a), local area (IEEE
802.11), metropolitan area (IEEE 802.16), and mobile cellular networks
(e.g., CDMA); physical-layer techniques for data modulation and multiple
access; RF system engineering aspects of mobile cellular networks (e.g.,
system capability for voice and packet data traffic, RF coverage for a
certain propagation environment.) Lec.
Prerequisites: ECE 461 with C or better and ECE 352 [C]
Recommended: Probability background and ECE 461

ECE 464. DIGITAL SIGNAL PROCESSING. (4 Credits)
Analysis and design of discrete-time linear-time invariant systems
for processing discrete-time signals: DT-LTI system properties, DT
signal analysis using Discrete-Time Fourier Transform, Discrete Fourier
Transform and z-Transform, frequency response and transfer function.
Signal sampling and reconstruction, digital processing of continuous-
time signals, FIR and IIR digital filter design, and filter structures.
Prerequisites: ECE 351 with C or better and ECE 352 [C]

ECE 468. DIGITAL IMAGE PROCESSING. (3 Credits)
Introduction to digital image processing including fundamental
concepts of visual perception, image sampling and quantization,
image enhancement in spatial and frequency domains (through 2D
Fourier transform), image restoration, and color image processing.
Implementation of algorithms using Matlab Image Processing Toolbox.
Prerequisites: ECE 351 with C or better and ECE 352 [C]

ECE 471. ENERGY-EFFICIENT VLSI DESIGN. (4 Credits)
Combinational and sequential logic design using CMOS transistors;
analysis of power consumption and logic delay of digital logic; clock
design including skew, jitter, and dynamic clock energy consumption;
supply voltage and power supply noise sources; dynamic voltage
frequency scaling (DVFS); sub-threshold logic design and effect on
energy/robustness; custom digital integrated circuit design including
transistor layouts and CAD entry; CMOS scaling and the effect on process
variability and power consumption. Lec/lab.
Prerequisites: ECE 271 with C or better and ECE 322 [C] and ECE 323
(may be taken concurrently) [C]

ECE 472. COMPUTER ARCHITECTURE. (4 Credits)
Computer architecture using processors, memories, and I/O devices
as building blocks. Issues involved in the design of instruction set
architecture, processor, pipelining, and memory organization. Design
philosophies and trade-offs involved in Reduced Instruction Set
Computer (RISC) architectures. Lec/lab. CROSSLISTED as CS 472/
CS 572.
Prerequisites: ECE 375 with C or better
Equivalent to: CS 472
ECE 473. MICROCONTROLLER SYSTEM DESIGN. (4 Credits)
Implementation of embedded computer systems focusing on the development of hardware and software for an embedded microcontroller system. Topics include internal microcontroller architecture, interfacing peripheral devices, mixed analog and digital systems, and hardware and software implementation of several systems using a microcontroller and peripherals.
Prerequisites: ECE 322 with C or better and ECE 375 [C] and CS 261 [C]

ECE 474. VLSI SYSTEM DESIGN. (4 Credits)
Introduction to custom and semi-custom digital integrated circuit design as used in VLSI systems. The use of CAD/CAE tools, design management, and design methodology are introduced.
Prerequisites: ECE 322 with C or better and ECE 375 [C]

ECE 476. ADVANCED COMPUTER NETWORKING. (4 Credits)
Prerequisites: (CS 372 with C or better or ECE 372 with C or better) and (ECE 353 [C] or ST 314 [C] or ST 314H [C])

ECE 477. MULTIMEDIA SYSTEMS. (4 Credits)
Design of multimedia systems used in information technology covering the hardware, software, applications, and networks. Components covered include multimedia representation, coding and compression techniques, wireless networks, networking for multimedia, and embedded system for multimedia. Lec.
Recommended: ECE 375

ECE 478. NETWORK SECURITY. (4 Credits)
Basic concepts and techniques in network security, risks and vulnerabilities, applied cryptography and various network security protocols. Coverage of high-level concepts such as authentication, confidentiality, integrity, and availability applied to networking systems. Fundamental techniques including authentication protocols, group key establishment and management, trusted intermediaries, public key infrastructures, SSL/TLS, IPSec, firewalls and intrusion detection.
CROSSLISTED as CS 478.
Prerequisites: CS 372 with C or better or ECE 372 with C or better
Equivalent to: CS 478
Recommended: CS 370

ECE 482. OPTICAL ELECTRONIC SYSTEMS. (4 Credits)
Photodetectors, laser theory, and laser systems. Lec/lab. CROSSLISTED as PH 482/PH 582.
Equivalent to: PH 482
Recommended: ECE 391 or (PH 481 or PH 581)

ECE 483. GUIDED WAVE OPTICS. (4 Credits)
Optical fibers, fiber mode structure and polarization effects, fiber interferometry, fiber sensors, optical communication systems. Lec/lab. CROSSLISTED as PH 483/PH 583.
Prerequisites: ECE 391 (may be taken concurrently) with C or better or PH 481 (may be taken concurrently) with C or better
Equivalent to: PH 483

ECE 484. ANTENNAS AND PROPAGATION. (4 Credits)
Introduction to antennas and radiowave propagation. Offered alternate years.
Prerequisites: (ECE 390 with C or better and ECE 391 [C])

ECE 485. MICROWAVE DESIGN TECHNIQUES. (4 Credits)
Introduction to basic design techniques required for the design of high-frequency circuits and systems. Lec/Lab.
Prerequisites: ECE 390 with C or better and ECE 391 [C]

ECE 499. SPECIAL TOPICS. (0-16 Credits)
Course work to meet students’ needs in advanced or specialized areas and to introduce new important topics in electrical and computer engineering at the undergraduate level.
This course is repeatable for 16 credits.

ECE 501. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 503. ECE MS THESIS. (1-16 Credits)
This course is repeatable for 999 credits.

ECE 505. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 506. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 507. SEMINAR. (1-16 Credits)
Graded P/N.
This course is repeatable for 16 credits.

ECE 516. ELECTRONIC MATERIALS AND DEVICES. (4 Credits)
Semiconductor fundamentals and physical principles of pn junctions and Schottky barrier diodes.
Recommended: ENGR 201

ECE 517. BASIC SEMICONDUCTOR DEVICES. (4 Credits)
Theory and physical principles of bipolar junction and field-effect transistors. Lec/rec.
Recommended: ECE 416

ECE 518. SEMICONDUCTOR PROCESSING. (4 Credits)
Theory and physical principles of bipolar junction and field-effect transistors. Lec/lab/rec.
Recommended: ECE 416

ECE 520. ANALOG CMOS INTEGRATED CIRCUITS. (4 Credits)
Principles and techniques of design of electronic circuits with focus on a design methodology for analog integrated circuits. Practical aspects of using CAD tools in analyzing and laying out circuits will be discussed.

ECE 521. ANALOG CIRCUIT SIMULATION. (4 Credits)
Formulation/solution of circuit equations; sparse matrix techniques; DC, transient, sensitivity, noise and Fourier analyses; RF circuit simulation.
Recommended: ECE 423 or ECE 520

ECE 522. CMOS INTEGRATED CIRCUITS I. (4 Credits)
Analysis and design of analog integrated circuits in CMOS technology; current mirrors, gain stages, single-ended operational amplifier, frequency response, and compensation.
Recommended: ECE 322 and completion or concurrent enrollment in ECE 323

ECE 523. CMOS INTEGRATED CIRCUITS II. (4 Credits)
Analysis and design of analog integrated circuits in CMOS technology; cascode current mirrors, cascode gain stages, single-ended and fully differential operational amplifier, common-mode feedback, noise, and distortion. Lec/lab.
Recommended: ECE 422 or ECE 522
ECE 530. CONTEMPORARY ENERGY APPLICATIONS. (4 Credits)
Contemporary energy issues and applications; fundamental physics of renewable energy sources (e.g., wind, wave, and solar), devices used to harvest energy from these sources, state-of-the-art renewable energy technology, power transmission, transformers, and energy storage.
Recommended: Matlab, basic circuit analysis with RLC components and diode

ECE 531. POWER ELECTRONICS. (4 Credits)
Fundamentals and applications of devices, circuits and controllers used in systems for electronic power processing. Lec/lab.
Recommended: ECE 322 and ECE 351 and completion or concurrent enrollment in ECE 323

ECE 532. DYNAMICS OF ELECTROMECHANICAL ENERGY CONVERSION. (4 Credits)
Generalized machine theory. Techniques for dynamic analysis of electromechanical machines including arbitrary reference frame theory. Lec/lab.
Corequisites: ECE 531
Recommended: ECE 331

ECE 533. POWER SYSTEM ANALYSIS. (4 Credits)
Fundamentals and control of real and reactive power, steady-state load flow studies, unbalance, stability and transient system analysis.
Recommended: ECE 323 and ECE 352 and three-phase power

ECE 534. ADVANCED ELECTRICAL MACHINES. (3 Credits)
Development of models for the dynamic performance of all classes of electrical machines; synchronous, induction, permanent magnet and reluctance motors. Dynamic motor simulations.
Recommended: ECE 530

ECE 535. ADJUSTABLE SPEED DRIVES AND MOTION CONTROL. (3 Credits)
Adjustable speed drives, associated power electronic converters, simulation and control. Lec.
Recommended: ECE 530

ECE 536. POWER SYSTEM PROTECTION. (3 Credits)
Recommended: ECE 433 or ECE 533

ECE 537. SMART GRID. (3 Credits)
Fundamentals of smart power grids. Technology advances in transmission and distribution systems, policy drivers, assets and demand management, and smart grid security.
Recommended: Background in power systems analysis equivalent to ECE 433

ECE 538. ELECTRIC AND HYBRID ELECTRIC VEHICLES. (4 Credits)
Transportation electrification history, hybrid electric vehicle architecture, powertrain components and their modeling and control, vehicle system dynamics and controls.
Recommended: ECE 331 and ECE 431

ECE 550. LINEAR SYSTEMS. (4 Credits)
Linear dynamic systems theory and modeling.
Recommended: ECE 351 and ECE 352

ECE 551. INTRODUCTION TO ANALOG AND DIGITAL COMMUNICATIONS. (4 Credits)
Fundamental concepts of analog and digital telecommunication systems: modeling, analysis, and design of analog amplitude and angle modulation systems; probabilistic performance assessment of modulated signals over noisy channels; introduction to baseband digital modulation techniques such as binary pulse amplitude modulation and pulse position modulation and their demodulation in the presence of random noise. Lec.
Recommended: ECE 351 and ECE 352 and ECE 353

ECE 562. DIGITAL COMMUNICATIONS AND CHANNEL CODING. (4 Credits)
Modeling, analysis, design of baseband and passband digital communications systems: geometric representation of signals; correlator receivers for M-ary digital communications systems; decision theory and its application to digital communication systems in additive white Gaussian noise environment; generation, transmission, and reception of passband digital modulated signals (BPSK, QPSK, FSK PAM); basics of information theory and channel encoding. Lec.
Recommended: ECE 461 and ECE 351 and ECE 352 and ECE 353

ECE 563. WIRELESS COMMUNICATIONS NETWORK. (4 Credits)
Wireless networks: personal area (IEEE 802.15.4a), local area (IEEE 802.11), metropolitan area (IEEE 802.16), and mobile cellular networks (e.g., CDMA); physical-layer techniques for data modulation and multiple access; RF system engineering aspects of mobile cellular networks (e.g., system capability for voice and packet data traffic, RF coverage for a certain propagation environment.) Lec.
Recommended: Probability background and ECE 461

ECE 564. DIGITAL SIGNAL PROCESSING. (4 Credits)
Analysis and design of discrete-time linear-time invariant systems for processing discrete-time signals: DT-LTI system properties, DT signal analysis using Discrete-Time Fourier Transform, Discrete Fourier Transform and z-Transform, frequency response and transfer function. Signal sampling and reconstruction, digital processing of continuous-time signals, FIR and IIR digital filter design, and filter structures.
Recommended: ECE 351 and ECE 352

ECE 565. ESTIMATION, FILTERING, AND DETECTION. (4 Credits)
Principles of estimation, linear filtering, and detection.
Recommended: ECE 353

ECE 566. INFORMATION THEORY. (4 Credits)
Introduction to information theory: entropy, differential entropy, entropy rates, mutual information, data compression, channel capacity, source coding, channel coding, network information theory.
Recommended: ECE 353 and strong mathematical background

ECE 570. HIGH PERFORMANCE COMPUTER ARCHITECTURE. (4 Credits)
Advanced concepts in computer architecture. Performance improvement employing advanced pipelining and multiple instruction scheduling techniques. Issues in memory hierarchy and management. CROSSLISTED as CS 570.
Equivalent to: CS 570
Recommended: ECE 472 or ECE 572
ECE 571. ENERGY-EFFICIENT VLSI DESIGN. (4 Credits)
Combinational and sequential logic design using CMOS transistors; analysis of power consumption and logic delay of digital logic; clock design including skew, jitter, and dynamic clock energy consumption; supply voltage and power supply noise sources; dynamic voltage frequency and scaling (DVFS); sub-threshold logic design and effect on energy/robustness; custom digital integrated circuit design including transistor layouts and CAD entry; CMOS scaling and the effect on process variability and power consumption. Lec/lab.
Recommended: ECE 271 and ECE 322 and completion or concurrent enrollment in ECE 323 (all with a minimum grade of C)

ECE 572. COMPUTER ARCHITECTURE. (4 Credits)
Computer architecture using processors, memories, and I/O devices as building blocks. Issues involved in the design of instruction set architecture, processor, pipelining, and memory organization. Design philosophies and trade-offs involved in Reduced Instruction Set Computer (RISC) architectures. Lec/lab. CROSSLISTED as CS 472/CS 572.
Equivalent to: CS 572
Recommended: ECE 375

ECE 573. MICROCONTROLLER SYSTEM DESIGN. (4 Credits)
Implementation of embedded computer systems focusing on the development of hardware and software for an embedded microcontroller system. Topics include internal microcontroller architecture, interfacing peripheral devices, mixed analog and digital systems, and hardware and software implementation of several systems using a microcontroller and peripherals. Lec/lab.
Recommended: ECE 322 and ECE 375 and CS 261

ECE 574. VLSI SYSTEM DESIGN. (4 Credits)
Introduction to custom and semi-custom digital integrated circuit design as used in VLSI systems. The use of CAD/CAE tools, design management, and design methodology are introduced.
Recommended: ECE 322 or ECE 375

ECE 575. DATA SECURITY AND CRYPTOGRAPHY. (3 Credits)
Secret-key and public-key cryptography, authentication and digital signatures, protocols, implementation issues, privacy enhanced mail, data and communication security standards.

ECE 576. ADVANCED COMPUTER NETWORKING. (4 Credits)
Equivalent to: CS 576
Recommended: (CS 372 or ECE 372) and (ECE 353 or ST 314 or ST 314H)

ECE 577. MULTIMEDIA SYSTEMS. (4 Credits)
Design of multimedia systems for information technology covering the hardware, software, applications, and networks. Components covered include multimedia representation, coding and compression techniques, wireless networks, networking for multimedia, and embedded system for multimedia. Lec.
Recommended: ECE 375

ECE 578. CYBER-SECURITY. (4 Credits)
A broad overview of the field of computer and network security. Essential cryptographic mechanisms such as symmetric and public-key cryptography (e.g., encryption, signatures), network security and authentication protocols (e.g., Kerberos, TLS, IPsec), system security (e.g., access control, firewalls), advanced topics (e.g., searchable encryption, cloud security, secure computation). CROSSLISTED as CS 578.
Equivalent to: CS 578

ECE 580. NETWORK THEORY. (4 Credits)
Linear graphs, multiport networks, and other topics in advanced network theory.

ECE 582. OPTICAL ELECTRONIC SYSTEMS. (4 Credits)
Photodetectors, laser theory, and laser systems. Lec/lab. CROSSLISTED as PH 482/PH 582.
Equivalent to: PH 582
Recommended: PH 481 or PH 581

ECE 583. GUIDED WAVE OPTICS. (4 Credits)
Optical fibers, fiber mode structure and polarization effects, fiber interferometry, fiber sensors, optical communication systems. Lec/lab. CROSSLISTED as PH 483/PH 583.
Equivalent to: PH 583
Recommended: Completion or concurrent enrollment in (ECE 391 or PH 481 or PH 581)

ECE 584. ANTENNAS AND PROPAGATION. (4 Credits)
Introduction to antennas and radiowave propagation. Offered alternate years.

ECE 585. MICROWAVE DESIGN TECHNIQUES. (4 Credits)
Introduction to basic design techniques required for the design of high-frequency circuits and systems. Lec/Lab.

ECE 590. ANALYTICAL TECHNIQUES IN ELECTROMAGNETIC FIELDS. (4 Credits)
Basic analytical techniques required to solve meaningful field problems in engineering.

ECE 591. ADVANCED ELECTROMAGNETICS. (3 Credits)
Advanced techniques for analyzing problems in electromagnetics, primarily numerical. Offered alternate years.
Recommended: ECE 590

ECE 593. RF MICROWAVE CIRCUIT DESIGN. (3 Credits)
Active/passive RF and microwave circuit design with emphasis to wireless systems.
Recommended: ECE 390 and ECE 391

ECE 599. SPECIAL TOPICS. (0-16 Credits)
Course work to meet students’ needs in advanced or specialized areas and to introduce new important topics in electrical and computer engineering at the graduate level. This course is repeatable for 99 credits.

ECE 601. RESEARCH. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 603. ECE PhD THESIS. (1-16 Credits)
This course is repeatable for 99 credits.

ECE 605. READING AND CONFERENCE. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 606. PROJECTS. (1-16 Credits)
This course is repeatable for 16 credits.
ECE 607. SEMINAR. (1-16 Credits)
This course is repeatable for 16 credits.

ECE 611. ELECTRONIC MATERIALS PROCESSING. (3 Credits)
Technology, theory, and analysis of processing methods used in
integration circuit fabrication. Offered alternate years. CROSSLISTED as
CHE 611.
Equivalent to: CHE 611

ECE 612. PROCESS INTEGRATION. (3 Credits)
Process integration, simulation, and statistical quality control issues
related to integrated circuit fabrication. Offered alternate years.
CROSSLISTED as CHE 612.
Equivalent to: CHE 612
Recommended: ECE 611 or CHE 611

ECE 613. ELECTRONIC MATERIALS AND CHARACTERIZATION. (3
Credits)
Physics and chemistry of electronic materials and methods of materials
characterization. Offered alternate years. CROSSLISTED as CHE 613.
Equivalent to: CHE 613

ECE 614. SEMICONDUCTORS. (3 Credits)
Essential aspects of semiconductor physics relevant for an advanced
understanding of semiconductor materials and devices. Offered alternate
years.
Recommended: Exposure to quantum mechanics and solid state physics.

ECE 615. SEMICONDUCTOR DEVICES I. (3 Credits)
Advanced treatment of two-terminal semiconductor electronic devices.
Offered alternate years.
Recommended: ECE 614

ECE 616. SEMICONDUCTOR DEVICES II. (3 Credits)
Advanced treatment of three-terminal semiconductor electronic devices.
Offered alternate years.
Recommended: ECE 615

ECE 619. SELECTED TOPICS IN SOLID STATE. (3 Credits)
Special courses taught on various topics in solid state as interests and
demands vary.
This course is repeatable for 99 credits.

ECE 621. RADIO FREQUENCY IC DESIGN. (3 Credits)
Radio frequency (RF) circuits. Principles, analysis, and design of bipolar
and MOS RF IC building blocks: low noise amplifiers, mixers, oscillators,
frequency synthesizers.
Recommended: (ECE 422 or ECE 522) and (ECE 423 or ECE 523) or
ECE 520

ECE 626. ANALOG CMOS CIRCUIT DESIGN. (3 Credits)
Switched-capacitor circuit design, on-chip filters, data converters.
Practical aspects of analog CMOS IC design.

ECE 627. OVERSAMPLED DELTA-SIGMA DATA CONVERTERS. (3 Credits)
Noise-shaping theory in first, second, and higher-order modulators.
Design, simulation, and realization in hardware of converters using this
popular architecture.

ECE 629. SELECTED TOPICS IN MICROELECTRONICS. (3 Credits)
Course work to meet student’s needs in advanced or specialized areas
and to introduce the newest important results in microelectronics.

ECE 659. SELECTED TOPICS IN SYSTEMS AND CONTROL. (3 Credits)
Course work to meet student’s needs in advanced or specialized areas
and to introduce the newest important results in systems and control.
This course is repeatable for 18 credits.

ECE 669. SELECTED TOPICS IN COMMUNICATIONS AND SIGNAL
PROCESSING. (3 Credits)
Course work to meet students’ needs in advanced or specialized areas
and to introduce the newest important results in signal processing.
This course is repeatable for 18 credits.

ECE 679. SELECTED TOPICS IN COMPUTER ENGINEERING. (1-16 Credits)
Topics to be presented at various times include information storage and
retrieval, computer architecture, fault-tolerant computing, asynchronous
sequential circuits, automata, data transmission, coding theory.
This course is repeatable for 99 credits.

ECE 699. SPECIAL TOPICS. (3 Credits)
Advanced studies in field and wave theories and special devices. Topic
examples are microwave and acoustic devices, advanced lasers and
masers, electron beam interactions with traveling waves, MHD device
dynamics.
This course is repeatable for 99 credits.

Humanitarian Engineering Science and Technology

HEST 241. HOUSEHOLD ENERGY IN GUATEMALA: BACKGROUND. (1
Credit)
An introduction to the technical, social, environmental, and economic
issues surrounding energy needs for households in developing countries
and the technologies and policies needed to help address them.
Students are introduced to concepts about global development, needs
assessment and co-design, qualitative and quantitative evaluation, and
local socioeconomic conditions. This course is preparation for the 10-
day Summer HEST 242 faculty-led study abroad course in Guatemala.
Students from any major are invited to participate in this multidisciplinary
course series.

HEST 242. HOUSEHOLD ENERGY IN GUATEMALA: APPLICATIONS. (3
Credits)
Through immersion in rural communities during this 10-day
interdisciplinary study abroad course, students will gain a deeper
understanding of household energy needs in developing countries,
as well as the social, environmental, technical, and economic issues
surrounding technologies and polices to help meet these needs. The
outcomes produced by a variety of household technologies such
as biomass cookstoves will be evaluated through qualitative and
quantitative data gathering, including experiments, observations, and
surveys, giving students the chance to practice their research and cross-
cultural communication skills under a variety of circumstances.
Recommended: HEST 241

HEST 299. SPECIAL TOPICS. (1-6 Credits)
This course is repeatable for 9 credits.

HEST 310. 4INTRO TO COMMUNITY ENGAGEMENT AND COMMUNITY-
BASED DESIGN. (3 Credits)
Includes study of civic problems and issues, design-thinking concepts
and application to co-design of engineering, science and technology-
related solutions with social impact, and development of dispositions
for effective community engagement through field study and service-
learning. Recommended course for student wanting to complete a HEST
internship. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society
HEST 320. *ENGINEERING FOR GLOBAL HEALTH SOLUTIONS. (3 Credits)
An introduction to the critical processes and drivers involved in the
development of engineering solutions to address global health problems.
Topics include world health challenges, accessing and interpreting health
and economic data, basic healthcare systems around the world, the
importance of ethical guidelines in ensuring the protection of human
subjects, the process of cost effectiveness assessment of a technology,
and the timescale and hurdles to adoption of a technology. (Bacc Core
Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society

HEST 399. SPECIAL TOPICS. (1-6 Credits)
This course is repeatable for 9 credits.

HEST 411. ENGINEERING DESIGN FOR EMERGENCY & LOW-RESOURCE
ENVIRONMENTS. (3 Credits)
Introduces the challenges of engineering in emergency and low-resource
environments, concepts of appropriate technologies and response, and
engineering design of discrete services and technologies such as water
systems, environmental health systems and infrastructure.
Recommended: Completion of an undergraduate engineering fluid
mechanics course

HEST 412. *MULTIDISCIPLINARY CASE STUDIES IN HUMANITARIAN
ENGINEERING, SCIENCE AND TECHNOLOGY. (3 Credits)
Introduces students to multidisciplinary methods and perspectives
applied to case studies in humanitarian engineering, science and
technology. Applications to real world issues with global implications
at the interface of humanity and nature are addressed from a systems
perspective using a case study approach.
Attributes: CSST – Core, Synthesis, Science/Technology/Society

HEST 499. SPECIAL TOPICS. (1-6 Credits)
This course is repeatable for 9 credits.

HEST 511. ENGINEERING DESIGN FOR EMERGENCY & LOW-RESOURCE
ENVIRONMENTS. (3 Credits)
Introduces the challenges of engineering in emergency and low-resource
environments, concepts of appropriate technologies and response, and
engineering design of discrete services and technologies such as water
systems, environmental health systems and infrastructure.
Recommended: Completion of an undergraduate engineering fluid
mechanics course

HEST 512. MULTIDISCIPLINARY CASE STUDIES IN HUMANITARIAN
ENGINEERING, SCIENCE AND TECHNOLOGY. (3 Credits)
Introduces students to multidisciplinary methods and perspectives
applied to case studies in humanitarian engineering, science and
technology. Applications to real world issues with global implications
at the interface of humanity and nature are addressed from a systems
perspective using a case study approach.

HEST 541. HOUSEHOLD ENERGY IN GUATEMALA: BACKGROUND. (1
Credit)
An introduction to the technical, social, environmental, and economic
issues surrounding energy needs for households in developing countries
and the technologies and policies needed to help address them.
Students are introduced to concepts about global development, needs
assessment and co-design, qualitative and quantitative evaluation, and
local socioeconomic conditions. This course is preparation for the 10-
day Summer HEST 542 faculty-led study abroad course in Guatemala.
Students from any major are invited to participate in this multidisciplinary
course series.

HEST 542. HOUSEHOLD ENERGY IN GUATEMALA: APPLICATIONS. (3
Credits)
Through immersion in rural communities during this 10-day
interdisciplinary study abroad course, students will gain a deeper
understanding of household energy needs in developing countries,
as well as the social, environmental, technical, and economic issues
surrounding technologies and polices to help meet these needs. The
outcomes produced by a variety of household technologies such
as biomass cookstoves will be evaluated through qualitative and
quantitative data gathering, including experiments, observations, and
surveys, giving students the chance to practice their research and cross-
cultural communication skills under a variety of circumstances.
Recommended: HEST 541

HEST 599. SPECIAL TOPICS. (1-6 Credits)
This course is repeatable for 9 credits.