SCHOOL OF CIVIL AND CONSTRUCTION ENGINEERING

The mission of the School of Civil and Construction Engineering is that of the College of Engineering (see college statement on mission and goals), as well as providing a comprehensive, state-of-the-art education to prepare students for professional and responsible engineering and constructor positions with business, industry, consulting firms, or government.

Education in the basic sciences occurs primarily in the freshman and sophomore years. Engineering science is introduced at the sophomore year and continues through to graduation with a combination of required courses and technical electives. Completion of the OSU Baccalaureate Core provides experience in the humanities, social sciences, and other nontechnical areas as additional preparation for a student's profession and life.

The CCE School offers an undergraduate option in environmental engineering that provides education in water pollution, air pollution, solid wastes, and hazardous wastes.

The growing complexity of modern engineering practice requires further specialization in one or more engineering disciplines. This is generally attained through postgraduate study. The CCE School offers MEng, MS, and PhD programs with concentrations in civil engineering, coastal and ocean engineering, construction engineering management, geomatics, geotechnical engineering, infrastructure materials, structural engineering, transportation engineering, and water resources engineering.

Areas of concentration may be combined to form an integrated civil engineering MS program, MEng program, or MEng, MS, and PhD minors.

The school also participates in the Master of Arts in Interdisciplinary Studies program.

Undergraduate Programs

Majors

• Architectural Engineering (http://catalog.oregonstate.edu/college-departments/engineering/school-civil-construction-engineering/architectural-engineering-bs-hbs/)
• Civil Engineering (http://catalog.oregonstate.edu/college-departments/engineering/school-civil-construction-engineering/civil-engineering-ba-bs-hba-hbs/)
• Construction Engineering Management (http://catalog.oregonstate.edu/college-departments/engineering/school-civil-construction-engineering/construction-engineering-management-ba-bs-hba-hbs/)

Graduate Programs

Major

• Civil Engineering (http://catalog.oregonstate.edu/college-departments/engineering/school-civil-construction-engineering/civil-engineering-meng-ms-phd/)

Minor

• Civil Engineering (http://catalog.oregonstate.edu/college-departments/engineering/school-civil-construction-engineering/civil-engineering-graduate-minor/)

W. Jason Weiss, School Head
Shane Brown, Associate Head for Undergraduate Affairs
Merrick Haller, Associate Head for Graduate Affairs

101 Kearney Hall
Oregon State University
Corvallis, OR 97331-3212
Phone: 541-737-4934
Email: cce@engr.orst.edu
Website: http://cce.oregonstate.edu/

Faculty

Professors Ashford1, Bell1, Cox, Gambatese1, Higgins1, Istok1, Liu, Ozkan-Haller, Schultz1, Trejo1, Yeh1, Weiss, Yim1

Associate Professors Brown1, Evans, Haller, Hill, Hunter-Zaworski1, Isgor1, Lundy1, Miller1, Ozkan-Haller, Parrish, Scott, Sillars1

Assistant Professors Arocho, Babbar-Sebens, Barbosa1, Coleri, Borello, Gillins, Hernandez, Hurwitz, Ideker, Lee, Leon, Mason, Olsen, Park1, Stuedlein1, Wang

Adjuncts Gupta, Sinha

Senior Instructors Arras, Fradella1

Instructors Berger1, Martin

Academic Advisors Nave-Abele, Whitehead

Emeritus Bell1, Bella1, Huber1, Hudspeth1, Klingeman1, Layton1, Pritchett1, Rogge1, Schroeder1, Sollitt1

1 Licensed Professional Engineer

Architectural Engineering (ARE)

ARE 301, ARE JUNIOR SEMINAR, 1 Credit
Professional practices of architectural engineering.

ARE 352, DESIGN OF ELECTRICAL AND ILLUMINATION SYSTEMS FOR BUILDINGS, 0-4 Credits
Design of electrical and illumination systems in buildings, including consideration of energy usage.
Prerequisite: CEM 471 with C or better

ARE 353, DESIGN OF HVAC SYSTEMS FOR BUILDINGS, 4 Credits
Design and engineering of heating, ventilating, and air conditioning (HVAC) systems in buildings, including consideration of energy usage and indoor environmental conditions.
Prerequisite: CEM 472 with C or better

Stuart omega
ARE 418, ARCHITECTURAL ENGINEERING PROFESSIONAL PRACTICE, 4 Credits
Principles and methods of solving architectural engineering problems in a studio setting, with considerations of space, form, function, and technology. Lec/rec. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisite: ARE 351 with C or better and ARE 352 [C] and CE 382 [C]

ARE 419, ARCHITECTURAL ENGINEERING DESIGN, 3 Credits
A capstone design project experience exposing students to problems and issues similar to those encountered in the practice of architectural engineering. Use of Building Information Modeling (BIM) in design, construction management, and integration of architectural, structural, mechanical, electrical and lighting systems. Lec/rec. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisite: ARE 418 with C or better

ARE 451, ADVANCED BUILDING CONSTRUCTION METHODS, 4 Credits
Advanced building construction methods, including integration of building components in building envelopes. Lec/rec.
Prerequisite: CEM 442 with C or better

ARE 499, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

ARE 501, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

ARE 503, THESIS, 1-16 Credits
This course is repeatable for 999 credits.

ARE 506, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

ARE 599, SPECIAL TOPICS, 0-16 Credits
This course is repeatable for 16 credits.

ARE 601, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

ARE 603, THESIS, 1-16 Credits
This course is repeatable for 999 credits.

ARE 699, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

Civil Engineering (CE)
CE 199, SPECIAL TOPICS, 1-4 Credits

CE 202, CIVIL ENGINEERING: GEOSPATIAL INFORMATION AND GIS, 3 Credits
Introductory design principles presented with the use of GIS and geospatial information (remote sensing, GPS, surveying, and aerial photography) for civil engineering problem solving. Introduction to the integration of geospatial data and analysis for decision making and management for site selection, mitigation, change analysis, modeling and assessment. Standard software and custom programming used in course. Students participate in both individual and team projects and presentations. Projects from the area of civil engineering. Lec/lab.
Prerequisite: CCE 201 with C or better or ENGR 248 with C or better

CE 299, SPECIAL TOPICS, 1-4 Credits
Graded P/N.
Equivalent to: CE 299H

CE 299H, SPECIAL TOPICS, 1-4 Credits
Graded P/N.
Attributes: HNRS – Honors Course Designator
Equivalent to: CE 299

CE 301, CE JUNIOR SEMINAR, 1 Credit
Professional practices of civil engineering.

CE 311, FLUID MECHANICS, 4 Credits
Fluid properties, fluid statics, fluid motion, conservation of mass, momentum and energy for incompressible fluids, dimensional analysis, civil engineering applications.
Prerequisite: (MTH 256 with C or better or MTH 256H with C or better) and PH 213 [C] and ENGR 213 [C] and ENGR 212 [C]

CE 313, HYDRAULIC ENGINEERING, 4 Credits
Analysis of large civil engineering fluid systems including conduit flow, multiple reservoirs, pipe networks, pumps, turbines, open channel flow, and hydraulic structures.
Prerequisite: CE 311 with C or better or CHE 331 with C or better or CHE 331H with C or better

CE 361, SURVEYING THEORY, 4 Credits
Use of surveying equipment, Gaussian error theory applied to measurements, calculations of position on spherical and plane surfaces, state plane coordinate systems, introduction to global positioning systems.
Prerequisite: (CCE 201 with C or better or CE 202 with C or better) and ENGR 213 [C] and PH 213 [C] and ST 314 [C]

CE 365, HIGHWAY LOCATION AND DESIGN, 3 Credits
Curve problems in highway design, including circular, vertical, compound curves and spirals; earth distribution analysis; preliminary office studies; paper location procedures and field layout problems.
Prerequisite: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better
CE 372, GEOTECHNICAL ENGINEERING I, 4 Credits
Basic soil mechanics including the identification and classification of soil, principles of compaction and consolidation, flow through porous media, effective stress, and shear strength. Lec/lab.
Prerequisite: ENGR 213 with C or better or ENGR 213H with C or better and (CE 311 (may be taken concurrently) [C] or CEM 311 (may be taken concurrently) [C] or CHE 331 (may be taken concurrently) [C] or CHE 331H (may be taken concurrently) [C]) and CH 201 [C] and PH 212 [C]

CE 373, GEOTECHNICAL ENGINEERING II, 4 Credits
Application of fundamental soil mechanics principles to analyses of slope stability, retaining structures, and foundation support. Lec/rec.
Prerequisite: CE 372 with C or better or FE 315 with C or better

CE 381, STRUCTURAL THEORY I, 4 Credits
Analysis of statically determinate structures (beams, frames, trusses, arches, and cables). Approximate analysis, influence lines, deflections. Lec/Rec.
Prerequisite: ENGR 213 with C or better or ENGR 213H with C or better

CE 382, STRUCTURAL THEORY II, 4 Credits
Analysis of statically indeterminate structures (beams, frames, trusses). Deflections. Energy methods, introduction to matrix methods.
Prerequisite: CE 381 with C or better and (MTH 306 [C] or MTH 306H [C] or (MTH 264 [C] and MTH 265 [C]))

CE 383, DESIGN OF STEEL STRUCTURES, 4 Credits
Introduction to design of steel members, connections and structural systems. Lec/lab.
Prerequisite: CE 382 with C or better

CE 392, INTRODUCTION TO HIGHWAY ENGINEERING, 4 Credits
Highway engineering standards, geometric design, cross section and roadside design, highway surfaces, pavement design, highways and the environment, highway construction and maintenance.
Prerequisite: (ENGR 212 with C or better or ENGR 212H with C or better) and CE 361 [C]

CE 401, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

CE 403, THESIS, 1-16 Credits
This course is repeatable for 16 credits.

CE 405, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

CE 406, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

CE 407, SEMINAR, 1-3 Credits
Understanding complexity and systems thinking.
Equivalent to: CE 407H
This course is repeatable for 16 credits.

CE 407H, SEMINAR, 1-3 Credits
Understanding complexity and systems thinking.
Attributes: HNRS – Honors Course Designator
Equivalent to: CE 407
This course is repeatable for 16 credits.

CE 408, WORKSHOP, 1-3 Credits
This course is repeatable for 3 credits.

CE 410, INTERNSHIP, 1-12 Credits
This course is repeatable for 16 credits.

CE 411, OCEAN ENGINEERING, 4 Credits
Introduction to linear wave theory and wave forces on piles. Guided design of wave gauge facility at Coos Bay, Oregon, that requires synthesizing fluid mechanics, structural design and foundation design. Lec/Rec.
Prerequisite: CE 313 with C or better or CEM 311 with C or better

CE 412, HYDROLOGY, 4 Credits
Fundamentals of hydrology, the hydrologic cycle, precipitation, streamflow, hydrograph analysis and hydrologic measurements.
Prerequisite: CE 313 with C or better

CE 413, GIS IN WATER RESOURCES, 3 Credits
Course presents Geographic Information System (GIS) technology for developing solutions to water resource problems: water quality, availability, flooding, the natural environment, and management of water resources. Typical GIS data models for hydrologic information are presented. Synthesis of geospatial and temporal water resources to support hydrologic analysis and modeling are covered.
Recommended: Senior standing or a previous introductory GIS course

CE 415, COASTAL INFRASTRUCTURE, 3 Credits
Planning and design criteria of coastal infrastructure, including breakwaters, jetties, sea walls, groins, piers, submerged pipelines, harbor design, and tsunami defense. Use of laboratory models, numerical simulations, and field observations for design.
Prerequisite: CE 313 with C or better

CE 417, HYDRAULIC ENGINEERING DESIGN, 4 Credits
Theory, planning, analysis, and design of hydraulic structures. Application of basic principles detailed analysis and design. Engineering planning and design of water resource systems.
Prerequisite: CE 313 with C or better
CE 418, ^CIVIL ENGINEERING PROFESSIONAL PRACTICE, 3 Credits
Engineering career paths; ethics and professionalism, project planning, execution and delivery; team building/management; marketing proposals; engineering overseas; dispute resolution; partnering; effective decision making; uncertainty and risk analysis; and current industry design and construction methods. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisite: CE 382 with C or better and CE 313 [C] and (CE 372 [C] or FE 315 [C])
Equivalent to: CE 454

CE 419, ^CIVIL INFRASTRUCTURE DESIGN, 3 Credits
A capstone design project experience exposing students to problems and issues similar to those encountered in the practice of civil engineering. Students should have completed ALL other required courses in their degree program prior to registering for this course. Lec/rec.
Attributes: CWIC – Core, Skills, WIC
Prerequisite: CE 418 with C or better

CE 420, ENGINEERING PLANNING, 4 Credits
The application of systems analysis to structuring, analyzing, and planning for civil engineering projects. Concept of the system and its environment; setting goals, objectives, and standards; evaluation criteria; solution generation and analysis; evaluation and optimization. Project management using precedence node diagramming; resource allocation and leveling; time-cost trade-off; and PERT.

CE 424, CONTRACTS AND SPECIFICATIONS, 4 Credits
Fundamentals of construction industry contracts, including technical specifications, and issues related to time, money, warranty, insurance, and changed conditions.
Prerequisite: CEM 442 with C or better

CE 427, TEMPORARY CONSTRUCTION STRUCTURES, 4 Credits
Design and construction of temporary structures including formwork, shoring, and earth retaining structures.
Prerequisite: (CE 321 with C or better or CCE 321 with C or better) and (FE 315 [C] or CE 372 [C]) and (CEM 383 [C] or CE 383 [C])

CE 429, OPTIMIZATION IN WATER RESOURCES ENGINEERING, 3 Credits
Introduction to problem formulation and optimization techniques for design of complex water resources systems.
Recommended: CE 412

CE 461, PHOTOGRAMMETRY, 3 Credits
Geometry of terrestrial and vertical photographs, flightline planning, stereoscopy and parallax, stereoscopic plotting instruments, analytical photogrammetry, orthophotography, introduction to photo interpretation, and aerial cameras.
Prerequisite: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 463, CONTROL SURVEYING, 4 Credits
Global Positioning Systems (GPS) theory, networks, and fieldwork; control specifications, methods and problems in obtaining large area measurements; precise leveling; network adjustments using least square techniques; field instrument adjustments.
Prerequisite: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 465, OREGON LAND SURVEY LAW, 3 Credits
Introduction to U.S. public land survey; Oregon state statutes, common law decisions, and administrative rules dealing with boundary law; case studies; unwritten land transfers; original and resurvey platting laws; guarantees of title; deed descriptions.
Prerequisite: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 469, PROPERTY SURVEYS, 3 Credits
U.S. public land survey restoration of corners, subdivision of sections; topographic mapping; subdivision and partition plats, resurvey plats, subdivision design; introduction to LIS/GIS; field astronomy.
Prerequisite: CE 361 with C or better or CEM 263 with C or better or FE 208 with C or better

CE 471, FOUNDATIONS FOR STRUCTURES, 3 Credits
Criteria, theory, design, and construction for foundations of structures; use of in-situ tests for geotechnical engineering; computer applications.
Prerequisite: CE 373 with C or better or FE 316 with C or better

CE 479, SLOPE AND EMBANKMENT DESIGN, 3 Credits
A comprehensive overview of evaluating stability and performance for natural and engineered slopes. Design aspects include construction of road embankments, slope remediation techniques and application of geosynthetics for slope stabilization, slope and wall construction, and drainage. CROSSLISTED as CE 479/FE 479 and CE 579/FE 579.
Prerequisite: CE 373 with C or better or FE 316 with C or better
Equivalent to: FE 479

CE 481, REINFORCED CONCRETE I, 4 Credits
Basic principles of reinforced concrete design; strength, stability, and serviceability criteria; design of reinforced concrete members for flexure and shear. Detailing, development length and splices.
Prerequisite: CE 382 with C or better

CE 482, MASONRY DESIGN, 3 Credits
A critical examination in depth of masonry design topics.
Prerequisite: CE 481 with C or better

CE 484, WOOD DESIGN, 4 Credits
Study of basic wood properties and design considerations. Design and behavior of wood connectors, beams, columns and beam columns. Introduction to plywood and glued laminated members. Analysis and design of structural diaphragms and shear walls. Lec/lab.
Prerequisite: CE 383 with C or better or CE 481 with C or better
Equivalent to: WSE 458
CE 486, PRESTRESSED CONCRETE, 3 Credits
Prestressed concrete analysis and design, systems of prestressing, materials, economics.
Prerequisite: CE 481 with C or better

CE 489, SEISMIC DESIGN FUNDAMENTALS, 3 Credits
Fundamentals of earthquake engineering, introduction to structural dynamics principles, response spectra, and ASCE 7 design and analysis provisions.
Prerequisite: CE 481 with C- or better and CE 383 [C-]

CE 491, TRANSPORTATION ENGINEERING, 3 Credits
Introduction to transportation engineering systems characteristics, traffic estimation, comprehensive transportation planning, highway economics, driver and vehicle characteristics, highway operations and capacity, signalization and control. Introduction to intelligent transportation.
Prerequisite: CE 392 with C or better and ST 314 [C]

CE 492, PAVEMENT STRUCTURES, 3 Credits
Design and rehabilitation of pavement structures for streets, highways, and airports.
Prerequisite: CE 392 with C or better

CE 499, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

CE 501, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

CE 503, THESIS, 1-16 Credits
This course is repeatable for 999 credits.

CE 505, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

CE 506, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

CE 507, SEMINAR, 1-16 Credits
This course is repeatable for 16 credits.

CE 508, WORKSHOP, 1-3 Credits
Graded P/N.
This course is repeatable for 3 credits.

CE 510, INTERNSHIP, 1-16 Credits
This course is repeatable for 16 credits.

CE 511, OCEAN ENGINEERING, 4 Credits
Introduction to linear wave theory and wave forces on piles. Guided design of wave gauge facility at Coos Bay, Oregon, that requires synthesizing fluid mechanics, structural design and foundation design.
Recommended: CE 313 or CEM 311

CE 512, HYDROLOGY, 4 Credits
Fundamentals of hydrology, the hydrologic cycle, precipitation, streamflow, hydrograph analysis and hydrologic measurements.

CE 513, GIS IN WATER RESOURCES, 3 Credits
Course presents Geographic Information System (GIS) technology for developing solutions to water resource problems: water quality, availability, flooding, the natural environment, and management of water resources. Typical GIS data models for hydrologic information are presented. Synthesis of geospatial and temporal water resources to support hydrologic analysis and modeling are covered.
Recommended: Senior standing or a previous introductory GIS course

CE 514, GROUNDWATER HYDRAULICS, 4 Credits
Principles of groundwater flow and chemical transport in confined and unconfined aquifers, aquifer testing and well construction. Design of dewatering and contaminant recovery systems.
Prerequisite: CE 547 with B or better
Equivalent to: BEE 514
Recommended: CE 313 and MTH 252

CE 515, COASTAL INFRASTRUCTURE, 3 Credits
Planning and design criteria of coastal infrastructure, including breakwaters, jetties, sea walls, groins, piers, submerged pipelines, harbor design, and tsunami defense. Use of laboratory models, numerical simulations, and field observations for design.
Recommended: CE 313

CE 516, STORMWATER DESIGN AND MANAGEMENT, 4 Credits
Introduction to urban stormwater drainage systems; urban hydrologic analysis; water quality in urban storm water; design of stormwater control systems; low impact development; storm water monitoring; and computer modeling of urban storm water systems.
Prerequisite: CE 512 with C or better or BEE 512 with C or better

CE 517, HYDRAULIC ENGINEERING DESIGN, 4 Credits
Theory, planning, analysis, and design of hydraulic structures. Application of basic principles detailed analysis and design. Engineering planning and design of water resource systems.
Recommended: CE 313

CE 518, GROUNDWATER MODELING, 4 Credits
Application of numerical methods to the solution of water flow and solute transport through saturated and unsaturated porous media. Analysis of confined and unconfined aquifers. Computer solution of large-scale field problems including groundwater contamination and aquifer yield.
Prerequisite: CE 514 with C or better
CE 520, ENGINEERING PLANNING, 4 Credits
The application of systems analysis to structuring, analyzing, and planning for civil engineering projects. Concept of the system and its environment; setting goals, objectives, and standards; evaluation criteria; solution generation and analysis; and evaluation and optimization. Project management using precedence node diagramming; resource allocation and leveling; time-cost trade-off; and PERT.

CE 524, CONTRACTS AND SPECIFICATIONS, 4 Credits
Fundamentals of construction industry contracts, including technical specifications, and issues related to time, money, warranty, insurance, and changed conditions.

CE 525, STOCHASTIC HYDROLOGY, 3 Credits
Introduction to fundamental concepts that are needed for stochastic modeling of hydrologic processes in presence of nonstationarity and uncertainty. CROSSLISTED as BEE 525/CE 525.
Prerequisite: CE 512 with C or better or BEE 512 with C or better
Equivalent to: BEE 525

CE 527, TEMPORARY CONSTRUCTION STRUCTURES, 4 Credits
Design and construction of temporary structures including formwork, shoring, and earth retaining structures.
Recommended: (CE 321 or CCE 321) and (FE 315 or CE 372) and (CEM 383 or CE 383)

CE 529, OPTIMIZATION IN WATER RESOURCES ENGINEERING, 3 Credits
Introduction to problem formulation and optimization techniques for design of complex water resources systems.
Recommended: CE 512 or BEE 512

CE 530, SELECTED TOPICS IN STRUCTURAL ANALYSIS AND MECHANICS, 3 Credits
A critical, in-depth examination of topics selected by the instructor from among topics not covered in other structural analysis and mechanics courses.
Prerequisite: CE 585 with C or better
This course is repeatable for 16 credits.

CE 531, STRUCTURAL MECHANICS, 3 Credits
Theories of failure, multi-axial stress conditions, torsion, shear distortions, energy methods of analysis, beams on elastic foundations. Nonlinear and inelastic behavior.

CE 532, FINITE ELEMENT ANALYSIS, 4 Credits
Applications of the finite element method to structural analysis, fluid flow and elasticity problems. Use and development of large finite element computer programs.
Prerequisite: (CE 585 with C or better or ME 520 with C or better)

CE 533, STRUCTURAL STABILITY, 3 Credits
Stability theory and applications, with emphasis on design of steel structures.
Recommended: CE 383

CE 534, STRUCTURAL DYNAMICS, 4 Credits
Analytical and numerical solutions for single, multi-degree of freedom and continuous vibrating systems. Behavior of structures, dynamic forces and support motions. Seismic response spectra analysis.
Recommended: CE 382

CE 535, INTRODUCTION TO RANDOM VIBRATIONS, 4 Credits
Introduction to probability theory and stochastic processes. Correlation and spectral density functions. Response of linear systems to random excitations. First excursion and fatigue failures. Applications in structural and mechanical system analysis and design.
Prerequisite: CE 534 with C or better or ME 522 with C or better

CE 536, MATRIX METHODS OF STRUCTURAL ANALYSIS, 4 Credits
Equivalent to: CE 585
Recommended: CE 382 with a minimum grade of C
Available via Ecampus

CE 537, NONLINEAR STRUCTURAL ANALYSIS, 4 Credits
Available via Ecampus

CE 538, STRUCTURAL RELIABILITY AND RISK ANALYSIS, 4 Credits
Application of probability and statistics in the reliability-based analysis and design of civil and mechanical engineering systems. Probabilistic modeling of loading and resistance including load and resistance factor design. Introduction to risk analysis and robustness.
Prerequisite: (CE 536 with C or better or ME 520 with C or better)
Recommended: ST 314

CE 540, SPECIAL TOPICS IN HYDRAULIC ENGINEERING, 3-4 Credits
Introduction to the tools and methods employed to characterize hydrologic properties of subsurface systems. Hands-on use of GPR, TDR, resistivity, and methods of determining hydraulic conductivity, sorptivity, bulk density, and other fundamental hydrologic properties.
Equivalent to: BRE 540
This course is repeatable for 16 credits.
CE 543, APPLIED HYDROLOGY, 4 Credits
Advanced treatment of hydrology covering major components of the hydrological cycle with special emphasis on surface water; hydrologic analysis and design of water resource systems; runoff prediction; and simulation of surface water systems. Offered alternate years.
Equivalent to: BRE 543
Recommended: BEE 512 and CE 412

CE 544, OPEN CHANNEL FLOW, 3 Credits
Steady, uniform, and nonuniform flow in natural and artificial open channels; unsteady flow; interaction of flow with river structures; and computational methods.
Equivalent to: BEE 544, BRE 544
Recommended: (CE 311 and CE 313) or CE 547

CE 547, WATER RESOURCES ENGINEERING I: PRINCIPLES OF FLUID MECHANICS, 4 Credits
Fluid mechanics for water resources engineers, classifications of fluid flows; fluid statics and dynamics, incompressible viscous flows; dimensional analysis; applications to fluid machinery, flow through porous media, fluid motion in rivers, lakes, oceans.

CE 552, ISOLATED SIGNALIZED INTERSECTIONS, 3 Credits
Relationships between signal display, user response, vehicle detection, and signal timing parameters are examined in detail. Traffic simulation is introduced to visualize and design the various elements of isolated signalized intersections.
Recommended: CE 595

CE 553, RAILROAD ENGINEERING, 3 Credits
The principal subject of this course is the railway infra-structure and operational issues related to high speed passenger rail and freight rail (class 1 and regional rail). The course will cover the techniques used to design, construct, monitor and maintain railway track. Class will include field trips.
Corequisites: CE 392

CE 554, DRIVING SIMULATION, 3 Credits
Relationships between the functional elements of driving simulation (simulation computer processing, sensory feedback generation, sensory display devices, and the human operator) are examined in detail. The role of driving simulation in transportation engineering research and practice is also considered in depth. Students will design experiments, analyze and interpret data, and extrapolate simulator results to real-world scenarios.
Recommended: CE 595

CE 556, TRANSPORTATION SAFETY ANALYSIS, 3 Credits
Provides students with a general knowledge of major transportation safety issues and a general background in the application of various statistical and econometric safety analysis techniques. In addition, this course presents a number of model-estimation methods used in transportation safety data analysis, and other subject areas that deal with safety analysis.
Recommended: CE 392 with a minimum grade of C and ST 511

CE 557, NETWORK FLOW ANALYSIS AND OPTIMIZATION, 3 Credits
Acquaints students with the basic elements of operations research through transportation networks, optimal paths in transportation networks, vehicle routing and scheduling problems on networks, facility location problems, transportation network design problems, transportation network flows, and to indicate the directions for future research in this area. Although the course utilizes examples from transportation, the techniques and models are generalizable to other areas of engineering, e.g., water networks, computer networks, energy networks, agricultural, power, telecommunication, etc.

CE 560, SELECTED TOPICS IN GEOMATICS ENGINEERING, 0-4 Credits
Selected topics on contemporary problems in geomatics engineering; application of ongoing research from resident and visiting faculty. This course is repeatable for 16 credits.

CE 561, PHOTOGRAMMETRY, 3 Credits
Geometry of terrestrial and vertical photographs, flightline planning, stereoscopy and parallax, stereoscopic plotting instruments, analytical photogrammetry, orthophotography, introduction to photo interpretation, and aerial cameras.
Recommended: CE 361 or CEM 263 or FE 208

CE 562, DIGITAL TERRAIN MODELING, 4 Credits
Fundamentals of LIDAR and creating digital terrain models. Computational geometry. Delaunay triangulations, spline interpolations, statistical gridding methods, ground filtering, data optimizations, and advanced topics in 3D modeling.

CE 563, CONTROL SURVEYING, 4 Credits
Global Positioning Systems (GPS) theory, networks, and fieldwork; control specifications, methods and problems in obtaining large area measurements; precise leveling; network adjustments using least square techniques; field instrument adjustments.
Recommended: CE 361 or CEM 263 or equivalent surveying or GIS course.

CE 564, GLOBAL NAVIGATION SATELLITE SYSTEM, 4 Credits
Theories and applications of surveying using satellites, focusing on the use of Global Navigation Satellite System (GNSS). The course will begin with the comprehensive overviews of the GNSS, reference and time systems as well as basic orbital mechanics. A description of the satellite signals and the data collected by GNSS receivers will also be covered. Different positioning and navigation techniques for using GNSS data (absolute/relative positioning, static/kinematic positioning, standalone/network based positioning) and different user applications will be reviewed, followed by practices of data collections and processing techniques.
Recommended: CE 361 or CE 202
CE 565, OREGON LAND SURVEY LAW, 3 Credits
Introduction to U.S. public land survey; Oregon state statutes, common law decisions, and administrative rules dealing with boundary law; case studies; unwritten land transfers; original and resurvey platting laws; guarantees of title; deed descriptions.
Recommended: CE 361 or CEM 263 or FE 208

CE 566, 3D LASER SCANNING AND IMAGING, 4 Credits
Fundamentals of lidar acquisition, registration, processing, modeling, analysis, and verification. Use of sensor platforms for 3D acquisition. Effective data management procedures. Introduction to other imaging techniques including structure from motion and structured light. Lec/lab.

CE 567, COASTAL REMOTE SENSING, 4 Credits
Application of remote sensing technologies (e.g., unmanned aircraft systems, multi- and hyperspectral imagery, high-resolution commercial satellite imagery, synthetic-aperture radar, and topographic and bathymetric lidar) to coastal mapping and charting, coastal engineering and coastal zone management. Both the theory and applications of advanced remote sensing technologies are covered. Lec/lab.
Recommended: An undergraduate surveying course, such as CE 361, CEM 263 or FE 208 and some exposure to MATLAB

CE 568, LEAST SQUARES ADJUSTMENTS, 3 Credits
Examines the theory of random error and statistical testing. Discusses the propagation of error in both indirect observations and direct observations from survey. Studies weights of observations and the principles of least squares. Explains how to adjust redundant observations in level nets, horizontal surveys, GNSS networks, and GNSS and terrestrial survey networks by least squares. Estimates the error ellipses of the adjusted observations. Evaluates methods for performing coordinate transformations.
Recommended: CE 361 or CEM 263 or FE 208

CE 569, PROPERTY SURVEYS, 3 Credits
U.S. public land survey: restoration of corners, subdivision of sections; topographic mapping; subdivision and partition plats, resurvey plats, subdivision design; introduction to LIS/GIS; field astronomy.
Recommended: CE 361 and CEM 263 or FE 208

CE 570, GEOTECHNICAL SPECIAL TOPICS, 1-16 Credits
Development and management of actual projects through the examination of case histories; evaluation of geotechnical data; development of design recommendations and preparation of project reports.
This course is repeatable for 16 credits.

CE 571, ADVANCED FOUNDATION ENGINEERING, 4 Credits
Presents the planning, analysis, and design of shallow and deep foundations from the geotechnical engineering perspective. Topics supporting course objectives include planning and execution of subsurface investigations, interpretation of in-situ tests, analysis and design of deep and shallow foundations, including geotechnical capacity, and immediate settlement. Assessment of deep foundation installation, axial and lateral loading tests, and group effects is presented. Evaluation of foundation performance is conducted under deterministic and probabilistic frameworks.
Recommended: CE 373 and CE 471

CE 572, ADVANCED GEOTECHNICAL LABORATORY, 4 Credits
Examination of soil composition and engineering properties of soils including volume change, pore pressure generation, strength, and deformation behavior of soils in the laboratory. Advanced static and cyclic shear strength testing of soils will also be discussed. Lec/lab.
Recommended: CE 373 and CE 471

CE 575, EARTH RETENTION AND SUPPORT, 4 Credits
Presents the theory and practice of design and construction of earth retaining structures. Topics include rigid and flexible retaining structures, ranging from gravity and cantilever systems, cantilever and anchored sheet piling, tied-back shoring elements, soil nailing, and mechanically stabilized earth walls. These topics are developed with a view on compaction stresses and surface loading, and invokes approaches that range from the static equations of equilibrium to empirical rules of thumb.
Recommended: CE 373

CE 576, GROUND IMPROVEMENT, 3 Credits
Presents the analysis and design of ground improvement techniques. Topics supporting course objectives include design for accelerated settlement (surcharge design) with and without pre-fabricated vertical drains, vibro-compaction, vibro-replacement (stone columns) and aggregate piers, deep soil mixing, jet grouting, EPS geofoam, and other improvement techniques for improving soil strength and stability, and limiting deformations and the effects of liquefaction.
Prerequisite: CE 572 with C or better and CE 577 [C]

CE 577, STATIC AND DYNAMIC SOIL BEHAVIOR, 3 Credits
An advanced coverage of volume change and strength behavior of soil. Specific course topics include effective stress, one-dimensional compression of soil, rate of soil consolidation, Mohr circle analysis, shear strength of sands, clays, and silts, and dynamic soil properties, strength, and testing.
Recommended: CE 372 and CE 373
CE 578, GEOTECHNICAL EARTHQUAKE ENGINEERING, 4 Credits
Major course topics include engineering seismology, strong ground motion, seismic hazard analysis, soil dynamics, seismic site response, earthquake motion selection, liquefaction, and seismic slope stability. Attention will be given to earthquakes created by the Cascadia Subduction Zone. Lec/lab.
Recommended: CE 373 and CE 471

CE 579, SLOPE AND EMBANKMENT DESIGN, 3 Credits
A comprehensive overview of evaluating stability and performance for natural and engineered slopes. Design aspects include construction of road embankments, slope remediation techniques and application of geosynthetics for slope stabilization, slope and wall construction, and drainage. CROSSLISTED as CE 479/FE 479 and CE 579/FE 579.
Equivalent to: FE 579
Recommended: CE 373 or FE 316

CE 580, SELECTED TOPICS IN STRUCTURAL DESIGN, 3 Credits
A critical examination in depth of topics selected by the instructor from among topics not covered in other structural design courses. This course is repeatable for 18 credits.

CE 581, REINFORCED CONCRETE I, 4 Credits
Basic principles of reinforced concrete design; strength, stability, and serviceability criteria; design of reinforced concrete members for flexure and shear. Detailing, development length and splices.
Recommended: CE 382

CE 582, MASONRY DESIGN, 3 Credits
A critical examination in depth of masonry design topics.
Recommended: CE 581

CE 583, BRIDGE DESIGN, 3 Credits
AASHTO specifications for bridge design; load models; design for moving loads; design and analysis of bridge decks and simple and continuous bridge spans.
Recommended: Completion of CE 381 and CE 382 and (CE 481 or CE 581) and concurrent enrollment in CE 383

CE 584, WOOD DESIGN, 4 Credits
Study of basic wood properties and design considerations. Design and behavior of wood connectors, beams, columns and beam columns. Introduction to plywood and glued laminated members. Analysis and design of structural diaphragms and shear walls. Lec/lab. CROSSLISTED as CE 584/WSE 558.
Equivalent to: WSE 558
Recommended: CE 383 or CE 481 with a minimum grade of C

CE 586, PRESTRESSED CONCRETE, 3 Credits
Prestressed concrete analysis and design, systems of prestressing, materials, economics.
Recommended: CE 581

CE 589, SEISMIC DESIGN, 4 Credits
Design of structures to resist the effects of earthquakes. Introduction to structural dynamics, dynamic analysis, seismic design philosophy, code requirements, and detailing for steel and reinforced concrete.
Recommended: CE 383 or CE 481

CE 590, SELECTED TOPICS IN TRANSPORTATION ENGINEERING, 1-3 Credits
Selected topics on contemporary problems in transportation engineering; application of ongoing research from resident and visiting faculty. This course is repeatable for 9 credits.

CE 591, TRANSPORTATION SYSTEMS ANALYSIS, PLANNING, AND POLICY, 3 Credits

CE 592, PAVEMENT STRUCTURES, 3 Credits
Design and rehabilitation of pavement structures for streets, highways, and airports.
Recommended: CE 392

CE 593, TRAFFIC FLOW ANALYSIS AND CONTROL, 4 Credits
Traffic operations and control systems; traffic flow theory and stream characteristics; capacity analysis; traffic models and simulation; accident and safety improvement. Offered alternate years.

CE 594, TRANSPORT FACILITY DESIGN, 4 Credits
Location and design of highways, and other surface transportation terminals; design for safety, energy efficiency, and environmental quality. Offered alternate years. Lec/rec.
Recommended: CE 392

CE 595, TRAFFIC OPERATIONS AND DESIGN, 3 Credits
Traffic operations and engineering; human and vehicular characteristics; traffic stream characteristics; highway capacity analysis; intersection operation, control and design.
Recommended: Completion or concurrent enrollment in CE 491

CE 596, PAVEMENT EVALUATION AND MANAGEMENT, 3 Credits
Advanced topics in pavement evaluation techniques and pavement management procedures.
Recommended: CE 492
CE 597, PUBLIC TRANSPORTATION, 3 Credits
Characteristics and nature of public transportation systems, including bus, light and heavy rail; financing policy considerations; planning transit service; managing and operating transit systems for small and large urban areas. Offered alternate years.

CE 598, AIRPORT PLANNING AND DESIGN, 3 Credits
Characteristics and nature of the air transport system. Airport financing, air traffic control. Analysis and design of airports and the airport planning processes. Airport appurtenances. Airport pavement design, environmental facilities and drainage. Offered alternate years.

CE 599, INTELLIGENT TRANSPORTATION SYSTEMS, 3 Credits
Introduction to intelligent transportation systems, including enabling surveillance, navigation, communication and computer technologies. Application of technologies for monitoring, analysis evaluation and prediction of transportation system performance. Intervention strategies, costs and benefits, safety, human factors, institutional issues and case studies. Offered alternate years.
Recommended: CE 491 for new graduate students

CE 601, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

CE 603, THESIS, 1-16 Credits
This course is repeatable for 999 credits.

CE 605, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

CE 606, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

CE 607, OCEAN ENGINEERING SEMINAR, 1 Credit
Presentations from on-campus and off-campus speakers discussing state of technology topics in ocean engineering research, development, and construction. Graded P/N. This course is repeatable for 16 credits.

CE 630, OCEAN WAVE MECHANICS I, 3 Credits
Linear wave boundary value problem formulation and solution, water particle kinematics, shoaling, refraction, diffraction, and reflection. Linear long wave theory with applications to tides, seiching, and storm surge. CROSSLISTED as CE 630/OC 630. Equivalent to: OC 630

CE 631, OCEAN WAVE MECHANICS II, 3 Credits
Second in the sequence of ocean wave engineering mechanics, covers the following topics: introduction to long wave theory, wave superposition, wave height distribution, and the wind-wave spectrum, introduction to wave forces, and basic nonlinear properties of water waves. May include additional selected topic in wave mechanics. CROSSLISTED as CE 631/OC 631.
Prerequisite: (CE 630 with C or better or OC 630 with C or better)
Equivalent to: OC 631

CE 634, LONG WAVE MECHANICS, 3 Credits
Theory of long waves. Depth-integrated Euler's equation and its jump conditions. Evolution equations and their solutions. Nonlinear shallow-water waves, the Korteweg-deVries equation and Boussinesq equation. Boundary-layer effects. Shallow-water waves on beaches. Applications of the fundamentals to problems of tsunamis. CROSSLISTED as CE 634/OC 634.
Prerequisite: (CE 630 with C or better and CE 631 [C])
Equivalent to: OC 634
Recommended: OC 670

CE 639, DYNAMICS OF OCEAN STRUCTURES, 3 Credits
Dynamic response of fixed and compliant structures to wind, wave and current loading; Morison equation and diffraction theory for wave and current load modeling, time and frequency domain solution methods; application of spectral and time series analyses; system parameter identification; and stochastic analysis of fatigue and response to extreme loads. Offered alternate years.

CE 640, SELECTED TOPICS IN OCEAN AND COASTAL ENGINEERING, 1-3 Credits
Selected topics on contemporary problems in ocean and coastal engineering; application of ongoing research from resident and visiting faculty. Offered alternate years. This course is repeatable for 9 credits.
Recommended: CE 630

CE 642, RANDOM WAVE MECHANICS, 3 Credits
Random wave theories, probability and statistics of random waves and wave forces, time series analyses of stochastic processes, ocean wave spectra. Offered alternate years.
Prerequisite: CE 630 with C or better

CE 643, COASTAL ENGINEERING, 3 Credits
Coastal sediment transport including nearshore currents, longshore onshore-offshore transport, and shoreline configuration; equilibrium beach profile concept with application to shore protection; shoreline modeling; tidal inlet hydrodynamics and inlet stabilization; design criteria for soft structures. Offered alternate years.
Prerequisite: CE 630 with C or better
CE 645, WAVE FORCES ON STRUCTURES, 3 Credits
Wave forces on small and large members, dimensional analyses and scaling of equations, identification and selection of force coefficients for Morison equation; compatibility of wave kinematics and force coefficients in Morison equation, diffraction and radiation of surface gravity waves by large floating bodies, wavemaker problem, and reciprocity relations.
Prerequisite: CE 630 with C or better

CE 647, OCEAN AND COASTAL ENGINEERING MEASUREMENTS, 3 Credits
Hands-on experience in the conduct of field and laboratory observations, including waves, currents, wind, tides, tsunami, sediments, bathymetry, shore profiles, wave forces on structures, and structural response. Online data archival and retrieval systems.
Prerequisite: CE 630 with C or better

CE 661, KINEMATIC POSITIONING AND NAVIGATION, 3 Credits
Application of Global Navigation Satellite System (GNSS) aided Inertial Navigation Systems (INS) to directly georeference survey data acquired from a moving platform, such as an unmanned aircraft system (UAS), conventional aircraft, survey boat, or all-terrain vehicle. Topics include 3D coordinate transformations, dead-reckoning, inertial navigation, kinematic GNSS, Kalman filtering, and sensor modeling.
Recommended: Undergraduate surveying course, such as CE 361, CE 263 or FE 208, and some exposure to MATLAB

CE 663, GEODESY, 4 Credits
Covers the geometrical aspects of terrestrial and celestial reference systems as well as modern realizations of these coordinate systems. In addition, an introductory level of the physical geodesy is also included, such as gravitational and gravity fields in order to deal with the geoid and heights. From this course, students are expected to understand the core elements of geometric and physical earth, which will assist them to have a solid background for other geospatial related studies.
Recommended: CE 202 or CE 361

CE 666, KINEMATIC POSITIONING AND NAVIGATION, 3 Credits
Application of Global Navigation Satellite System (GNSS) aided Inertial Navigation Systems (INS) to directly georeference survey data acquired from a moving platform, such as an unmanned aircraft system (UAS), conventional aircraft, survey boat, or all-terrain vehicle. Topics include 3D coordinate transformations, dead-reckoning, inertial navigation, kinematic GNSS, Kalman filtering, and sensor modeling.
Recommended: Undergraduate surveying course, such as CE 361, CE 263 or FE 208, and some exposure to MATLAB

CE 808, WORKSHOP, 1-16 Credits
This course is repeatable for 16 credits.

Civil and Construction Engineering (CCE)

CCE 101, CIVIL AND CONSTRUCTION ENGINEERING ORIENTATION, 2 Credits
Introduction to civil and construction engineering professions; problem solving, communication skills. This course is required by the CE, CEM and FE programs.
Equivalent to: CE 101
Recommended: MTH 111 and completion or concurrent enrollment in MTH 112 or MTH 251

CCE 102, CIVIL AND CONSTRUCTION ENGINEERING: PROBLEM-SOLVING AND TECHNOLOGY, 3 Credits
A skills-based course that focuses on introducing freshman students to the use of hand calculation and computer technology in solving civil engineering and construction engineering problems. Topics to be covered include structured approach to problem solving, use of Excel for engineering applications, internet tools and data bases, homework professionalism. Opportunities for involvement with ASCE and AGC student chapters. Lec/lab.
Equivalent to: CE 102
Recommended: Completion or concurrent enrollment in MTH 112 or MTH 251

CCE 201, CIVIL AND CONSTRUCTION ENGINEERING GRAPHICS AND DESIGN, 3 Credits
Introduces the engineering design process and graphic skills that are used by civil and construction engineers. Topics include design process, geometric construction, multiviews, auxiliary views, sections, dimensioning, tolerances and engineering drawing standards. Students participate in team design projects and presentations. Graphic and design projects from the areas of civil and construction engineering. Lec/lab.
Prerequisite: MTH 111 with C or better or MTH 112 (may be taken concurrently) with C or better or MTH 241 (may be taken concurrently) with C or better or MTH 251 (may be taken concurrently) with C or better
Equivalent to: CE 201

CCE 203, INTRODUCTION TO VIRTUAL DESIGN AND CONSTRUCTION, 3 Credits
Basic principles of virtual design and construction (VDC) focusing on skills required for generating design and construction information models. Parametric modeling and design constraints are introduced. Students will utilize construction drawings and documentation to create accurate 3D models. Use of design and construction information models for making estimates of quantities and cost, and for determination of constructability problems. Lec/lab.
Prerequisite: CCE 201 with C or better or ENGR 248 with C or better
Recommended: Sophomore standing

CCE 207, CCE SEMINAR, 1 Credit
Professional practices of civil and construction engineering.
Prerequisite: CCE 102 with C or better or ENGR 112 with C or better or CBEE 102 with C or better or NSE 115 with C or better or CS 162 with C or better or BEE 102 with C or better
Recommended: Sophomore standing

CCE 321, CIVIL AND CONSTRUCTION ENGINEERING MATERIALS, 4 Credits
Highway materials; aggregate, concrete and asphalt. Standard test methods.
Prerequisite: ([(ENGR 213 with C or better or ENGR 213H with C or better]
and (ST 314 [C] or BA 276 [C]))
Equivalent to: CCE 321H, CE 321
CCE 321H, CIVIL AND CONSTRUCTION ENGINEERING MATERIALS, 4 Credits
Highway materials; aggregate, concrete and asphalt. Standard test methods.
Attributes: HNRS – Honors Course Designator
Prerequisite: (ENGR 213 with C or better or ENGR 213H with C or better)
and (ST 314 [C] or BA 276 [C])
Equivalent to: CCE 321

CCE 422, GREEN BUILDING MATERIALS, 3 Credits
Introduces concepts of construction with green building materials. Specific concepts include evaluation of what truly makes a material 'green', long-term performance (e.g., durability) of materials, material production and life cycle cost analysis. Concepts of green building programs, guidelines and specifications will be introduced.
Prerequisite: CE 321 with C or better or CCE 321 with C or better
Recommended: (ECON 201 or ECON 201H or ECON 202 or ECON 202H) and ST 314
Available via Ecampus

CCE 423, CONCRETE FUNDAMENTALS, 4 Credits
Portland cement hydration, microstructural development, fresh and hardened properties, testing standards, durability, alternative cements.
Recommended: CCE 321 or similar introductory materials course or CCE 421

CCE 522, GREEN BUILDING MATERIALS, 3 Credits
Introduces concepts of construction with green building materials. Specific concepts include evaluation of what truly makes a material 'green', long-term performance (e.g., durability) of materials, material production and life cycle cost analysis. Concepts of green building programs, guidelines and specifications will be introduced.
Recommended: (CE 321 or CCE 321) and (ECON 201 or ECON 201H or ECON 202 or ECON 202H) and ST 314
Available via Ecampus

CCE 523, CONCRETE FUNDAMENTALS, 4 Credits
Portland cement hydration, microstructural development, fresh and hardened properties, testing standards, durability, alternative cements.
Recommended: CCE 321 or similar introductory materials course or CCE 421

CCE 524, ASPHALT FUNDAMENTALS, 3 Credits
Focuses on characterization of asphalt materials and mixtures, current laboratory testing technology for asphalt binders and mixes, engineering of asphalt mixes to meet design requirements, asphalt recycling process, environmental impacts of asphalt pavements, and recent developments in asphalt technology.

CCE 525, CONSTRUCTION SITE SYSTEMS ENGINEERING, 3 Credits
Design and planning of construction site field operations and engineered systems. Systems analysis and design as it applies to civil engineering projects. Design of construction systems: blasting; rock crushing and conveying; dewatering; cranes, pile driving, and rigging; and concrete pumping and placement. Construction site design and process design.

CCE 526, DESIGN FOR SAFETY, 3 Credits
Theoretical concepts and industry practices used to model, evaluate, and improve construction worker safety through the design of the project features, construction operations, and site safety program elements. Causes of construction site accidents, hazard recognition and comprehension, safety risk valuation and mitigation, and the true costs of injuries and fatalities.

CCE 528, ADVANCED VIRTUAL DESIGN AND CONSTRUCTION, 4 Credits
Focusing on the skills and information needed to effectively use an existing Building Information Model (BIM) in plan execution for a building construction project. This is a project based course where students gain knowledge on the implementation of BIM concepts throughout the lifecycle of a building, from planning and design, to construction and operations.
Recommended: CCE 203 [D-]

CCE 529, LEAN CONSTRUCTION, 3 Credits
Introduction to the basics of lean production management, especially about how they are applied to the AEC industry to improve the operation management and product development. Class topics include theory of manufacturing science, principles of the lean production system, application of production management to project management, variability management in design and construction, improving project performance in the AEC industry, data gathering and process evaluation for productivity improvement.
CCE 552, PROJECT RISK MANAGEMENT, 4 Credits
An introduction to the concept of project risk in producing constructed engineering projects. Course content includes project baselining, risk definition and identification, risk assessment and management techniques, risk control, risk response, and risk management. CROSSLISTED as CCE 552/IE 586.
Equivalent to: IE 586
Available via Ecampus

CCE 554, PROFESSIONAL RESPONSIBILITY AND ETHICS, 3 Credits
An in-depth exploration of professional engineering ethics. Course content includes conceptual theoretical basis of ethics, ethics among professional organizations, ethical consideration of design, critical analysis of ethical situations, ethics in the workplace, and ethical considerations regarding the broader environment. CROSSLISTED as CCE 554/IE 589.
Equivalent to: IE 589
Available via Ecampus

CCE 561, HYDROGRAPHIC SURVEYING, 3 Credits
Covers the fundamentals of hydrographic surveys performed to measure the depth and bottom configuration of water bodies in support of nautical charting and other areas of marine geomatics, as well as marine construction, benthic habitat mapping, marine spatial planning, and bathymetric mapping of rivers and lakes. Topics include underwater acoustics, sound velocity, the sonar equation, types of sonar systems (e.g., single-beam, multibeam, side scan sonar), water levels and tidal datums, positioning and motion sensing for hydrographic surveying, bathymetric lidar, and applications of hydrographic surveying.

CCE 599, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

CCE 621, DURABILITY AND CONDITION ASSESSMENT OF REINFORCED CONCRETE, 4 Credits
Concrete durability including freeze-thaw attack, sulfate attack, corrosion, alkali-silica reaction, long-term performance, durability modeling, durability of alternative cements. Non-destructive condition assessment; model-assisted testing; corrosion detection and monitoring; multi-scale assessment; service/remaining life predictions.
Prerequisite: CCE 523 with C or better
Recommended: CCE 321

CCE 623, CORROSION OF METALS AND CORROSION CONTROL, 4 Credits
Recommended: CH 202 or CH 231 or CH 231H or CCE 321

CCE 624, SERVICE LIFE MODELING OF INFRASTRUCTURE MATERIALS, 4 Credits
Recommended: Undergraduate level calculus and chemistry courses

Construction Engineering Management (CEM)

CEM 263, PLANE SURVEYING, 3 Credits
Use of field surveying equipment; error analysis; plane surveying methods applied to construction; plane coordinate computations; topographic mapping; and introduction to GPS. Lec/lab.
Prerequisite: ENGR 211 with C or better or ENGR 211H with C or better

CEM 311, HYDRAULICS, 4 Credits
Pressure and energy concepts of fluids, fluid measurements, flow in pipes and open channels.
Prerequisite: ENGR 211 with C or better or ENGR 211H with C or better

CEM 326, CONSTRUCTION SAFETY, 3 Credits
Training in construction safety with emphasis on hazard identification, avoidance, control, and prevention. Lec/rec.
Prerequisite: CCE 207 with C or better or CEM 407 with C or better

CEM 341, CONSTRUCTION ESTIMATING I, 4 Credits
Fundamentals of estimating and bidding construction projects; plan reading, specification interpretation; quantity take-off; types of estimates; estimating and methods of construction for sitework, concrete, and carpentry; estimating subcontracts, estimating job overhead and home office overhead; estimating profit, and computer-aided estimating.
Prerequisite: CEM 442 with C or better
Recommended: CCE 102 and CCE 201
CEM 342, CONSTRUCTION ESTIMATING II, 4 Credits
Fundamentals of estimating and bidding construction projects; plan reading, specification interpretation; quantity take-off; types of estimates; estimating and methods of construction for sitework, concrete, and carpentry; estimating subcontracts, estimating job overhead and home office overhead; estimating profit, and computer-aided estimating.
Prerequisite: CEM 341 with C or better

CEM 343, CONSTRUCTION PLANNING AND SCHEDULING, 4 Credits
Principles of construction planning, scheduling, and resource optimization; scheduling techniques and calculations; methods for integrating project resources (materials, equipment, personnel, and money) into the schedule.
Prerequisite: CEM 342 (may be taken concurrently) with C or better

CEM 381, STRUCTURES I, 4 Credits
Introduction to statically determinate analysis and design of steel structures. Lec/rec.
Prerequisite: ENGR 213 with C or better or ENGR 213H with C or better

CEM 383, STRUCTURES II, 4 Credits
Analysis and design of building elements of concrete and timber; detailing and fabrication. Lec/rec.
Prerequisite: CCE 321 (may be taken concurrently) with C or better and CEM 381 [C]

CEM 403, THESIS, 1-16 Credits
This course is repeatable for 16 credits.

CEM 405, READING AND CONFERENCE, 1-16 Credits
This course is repeatable for 16 credits.

CEM 406, PROJECTS, 1-16 Credits
This course is repeatable for 16 credits.

CEM 407, SEMINAR, 1 Credit
Professional practices of construction engineering management.

CEM 431, OBTAINING CONSTRUCTION CONTRACTS, 4 Credits
Preparing and effectively presenting detailed and complete proposals for the execution of construction projects.
Prerequisite: CEM 341 with C or better
Equivalent to: CEM 432

CEM 432, CONSTRUCTION PROJECT PLANNING, 3 Credits
Planning and preparing cost estimates, schedules, site logistics plans for executing construction projects; presenting written and oral construction proposals.
Prerequisite: CEM 341 with C or better
Equivalent to: CEM 431

CEM 441, HEAVY CIVIL CONSTRUCTION MANAGEMENT, 4 Credits
Heavy civil construction management methods. Construction equipment types, capabilities, costs, productivity, and the selection and planning of equipment needed for a project. Soil characteristics, quantity analysis, and movement on construction sites.
Prerequisite: FE 315 with C or better or CE 372 with C or better

CEM 442, BUILDING CONSTRUCTION MANAGEMENT, 4 Credits
Building construction management and methods.
Prerequisite: CCE 207 with C or better or CEM 407 with C or better

CEM 443, PROJECT MANAGEMENT FOR CONSTRUCTION, 4 Credits
Project management concepts for construction; concepts, roles and responsibilities, labor relations and supervision, administrative systems, documentation, quality management, and process improvement. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisite: CEM 341 with C or better and CEM 343 [C]

CEM 471, ELECTRICAL FACILITIES, 4 Credits
Principles and applications of electrical components of constructed facilities; basic electrical circuit theory, power, motors, controls, codes, and building distribution systems. Lec/lab.
Prerequisite: CCE 207 with C or better or CEM 407 with C or better

CEM 472, MECHANICAL FACILITIES, 3 Credits
Principles and applications of mechanical components of constructed facilities; heating, ventilating, air conditioning, plumbing, fire protection, and other mechanical construction.
Prerequisite: CCE 207 with C or better or CEM 407 with C or better

CEM 473, PROJECT MANAGEMENT FOR CONSTRUCTION, 4 Credits
Project management concepts for construction; concepts, roles and responsibilities, labor relations and supervision, administrative systems, documentation, quality management, and process improvement.

CEM 541, HEAVY CIVIL CONSTRUCTION MANAGEMENT, 4 Credits
Heavy civil construction management methods. Construction equipment types, capabilities, costs, productivity, and the selection and planning of equipment needed for a project. Soil characteristics, quantity analysis, and movement on construction sites.
Recommended: FE 315 or CE 372

CEM 543, PROJECT MANAGEMENT FOR CONSTRUCTION, 4 Credits
Project management concepts for construction; concepts, roles and responsibilities, labor relations and supervision, administrative systems, documentation, quality management, and process improvement.

CEM 550, CONTEMPORARY TOPICS IN CONSTRUCTION ENGINEERING MANAGEMENT, 4 Credits
Contemporary topics of emerging technologies and processes, construction engineering and management, how industry environmental change causes development of new technologies, and the applications of the technologies in the field.
CEM 551, PROJECT CONTROLS, 4 Credits
Advanced methods of project controls including advanced technologies and methodologies for quality, time, and cost management; project management organization models, and intra-organizational relationships.