OTHER DEGREES & PROGRAMS WITHIN THE COLLEGE OF ENGINEERING

Undergraduate Programs

MAJORS

• Engineering Science (http://catalog.oregonstate.edu/college-departments/engineering/other-degrees-programs/engineering-science-bs-hbs/)
• Outdoor Products (http://catalog.oregonstate.edu/college-departments/engineering/other-degrees-programs/outdoor-products-bs-hbs/)

Minors

• Humanitarian Engineering (http://catalog.oregonstate.edu/college-departments/engineering/other-degrees-programs/humanitarian-engineering-minor/)
• International Engineering (http://catalog.oregonstate.edu/college-departments/engineering/other-degrees-programs/international-engineering-minor/)
• Outdoor Products (http://catalog.oregonstate.edu/college-departments/engineering/other-degrees-programs/outdoor-products-minor/)

Engineering Science (ENGR)

ENGR 003, UNDERGRADUATE RESEARCH, 0 Credits
Engage in research activities appropriate to the discipline; and through the research experience, acquire skills, techniques, and knowledge relevant to the field of study. In consultation with a faculty mentor, engage in research activity, and make and execute a plan for a project.

ENGR 101, DESIGN OF COFFEE, 2 Credits
Roast coffee beans and brew and taste coffee while using engineering design to create the perfect cup of coffee using the least amount of electricity. Lec/rec.

ENGR 111, ENGINEERING ORIENTATION I, 3 Credits
Engineering as a profession, historical development, ethics, curricula and engineering careers. Introduction to problem analysis and solution, data collection, accuracy and variability. Lec/rec.

ENGR 112, INTRODUCTION TO ENGINEERING COMPUTING, 3 Credits
Systematic approaches to engineering problem solving using computers. Logical analysis, flow charting, input/output design, introductory computer programming and use of engineering software. Lec/lab/rec.

ENGR 199, SPECIAL TOPICS, 0-16 Credits
Graded P/N.

ENGR 201, ELECTRICAL FUNDAMENTALS I, 3 Credits
Pre requisite: (MTH 251 with C or better or MTH 251H with C or better) and (MTH 252 [C] or MTH 252H [C])

ENGR 201H, ELECTRICAL FUNDAMENTALS I, 3 Credits

ENGR 202, ELECTRICAL FUNDAMENTALS II, 3 Credits
Sinusoidal steady-state analysis and phasors. Application of circuit analysis to solve single-phase and three-phase circuits including power, mutual inductance, transformers and passive filters. Lec/lab.
Pre requisite: ENGR 201 with C or better or ENGR 201H with C or better

ENGR 203, ELECTRICAL FUNDAMENTALS III, 3 Credits
Laplace transforms, Fourier series, Bode plots, and their application to circuit analysis.
Pre requisite: (ENGR 201 with C or better or ENGR 201H with C or better) and (ENGR 202 [C] or ENGR 202H [C]) and (MTH 256 [C] or MTH 256H [C])

ENGR 211, STATICS, 3 Credits
Analysis of forces induced in structures and machines by various types of loading. Lec/rec.
Pre requisite: MTH 252 with C or better or MTH 252H with C or better

ENGR 212H, INTRODUCTION TO ENGINEERING COMPUTING, 3 Credits
Systematic approaches to engineering problem solving using computers. Logical analysis, flow charting, input/output design, introductory computer programming and use of engineering software. Lec/lab/rec.

Attributes: HNRS – Honors Course Designator

Available via Ecampus

Equivalent to: ENGR 112

ENGR 199H
This course is repeatable for 16 credits.

Equivalent to: ENGR 201H

Available via Ecampus

ENGR 202H

Equivalent to: ENGR 201

Available via Ecampus

ENGR 203H

Equivalent to: ENGR 202H

Available via Ecampus

ENGR 211H

Available via Ecampus

ENGR 212H

Available via Ecampus

ENGR 212H, INTRODUCTION TO ENGINEERING COMPUTING, 3 Credits
Systematic approaches to engineering problem solving using computers. Logical analysis, flow charting, input/output design, introductory computer programming and use of engineering software. Lec/lab/rec.

Attributes: HNRS – Honors Course Designator

Equivalent to: ENGR 112

ENGR 199, SPECIAL TOPICS, 0-16 Credits
Graded P/N.

Equivalent to: ENGR 199H

This course is repeatable for 16 credits.

ENGR 201, ELECTRICAL FUNDAMENTALS I, 3 Credits
Pre requisite: (MTH 251 with C or better or MTH 251H with C or better) and (MTH 252 [C] or MTH 252H [C])

ENGR 201H

Equivalent to: ENGR 201H

Available via Ecampus

ENGR 202, ELECTRICAL FUNDAMENTALS II, 3 Credits
Sinusoidal steady-state analysis and phasors. Application of circuit analysis to solve single-phase and three-phase circuits including power, mutual inductance, transformers and passive filters. Lec/lab.
Pre requisite: ENGR 201 with C or better or ENGR 201H with C or better

ENGR 202H

Available via Ecampus

ENGR 203, ELECTRICAL FUNDAMENTALS III, 3 Credits
Laplace transforms, Fourier series, Bode plots, and their application to circuit analysis.
Pre requisite: (ENGR 201 with C or better or ENGR 201H with C or better) and (ENGR 202 [C] or ENGR 202H [C]) and (MTH 256 [C] or MTH 256H [C])

ENGR 211, STATICS, 3 Credits
Analysis of forces induced in structures and machines by various types of loading. Lec/rec.
Pre requisite: MTH 252 with C or better or MTH 252H with C or better

ENGR 212, INTRODUCTION TO ENGINEERING COMPUTING, 3 Credits
Systematic approaches to engineering problem solving using computers. Logical analysis, flow charting, input/output design, introductory computer programming and use of engineering software. Lec/lab/rec.

Attributes: HNRS – Honors Course Designator

Equivalent to: ENGR 112

ENGR 199, SPECIAL TOPICS, 0-16 Credits
Graded P/N.

Equivalent to: ENGR 199H

This course is repeatable for 16 credits.

ENGR 201, ELECTRICAL FUNDAMENTALS I, 3 Credits
Pre requisite: (MTH 251 with C or better or MTH 251H with C or better) and (MTH 252 [C] or MTH 252H [C])

ENGR 201H

Equivalent to: ENGR 201H

Available via Ecampus

ENGR 202, ELECTRICAL FUNDAMENTALS II, 3 Credits
Sinusoidal steady-state analysis and phasors. Application of circuit analysis to solve single-phase and three-phase circuits including power, mutual inductance, transformers and passive filters. Lec/lab.
Pre requisite: ENGR 201 with C or better or ENGR 201H with C or better

ENGR 202H

Available via Ecampus

ENGR 203, ELECTRICAL FUNDAMENTALS III, 3 Credits
Laplace transforms, Fourier series, Bode plots, and their application to circuit analysis.
Pre requisite: (ENGR 201 with C or better or ENGR 201H with C or better) and (ENGR 202 [C] or ENGR 202H [C]) and (MTH 256 [C] or MTH 256H [C])

ENGR 211, STATICS, 3 Credits
Analysis of forces induced in structures and machines by various types of loading. Lec/rec.
Pre requisite: MTH 252 with C or better or MTH 252H with C or better

ENGR 212H

Available via Ecampus
ENGR 211H, STATICS, 3 Credits
Analysis of forces induced in structures and machines by various types of loading. Lec/rec.
Attributes: HNRS – Honors Course Designator
Prerequisite: MTH 252 with C or better or MTH 252H with C or better
Equivalent to: ENGR 211

ENGR 212, DYNAMICS, 3 Credits
Kinematics, Newton's laws of motion, and work-energy and impulse-momentum relationships applied to engineering systems. Lec/rec.
Prerequisite: (ENGR 211 with C or better or ENGR 211H with C or better) and (PH 211 [C] or PH 211H [C])
Equivalent to: ENGR 212H
Available via Ecampus

ENGR 212H, DYNAMICS, 3 Credits
Kinematics, Newton's laws of motion, and work-energy and impulse-momentum relationships applied to engineering systems. Lec/rec.
Attributes: HNRS – Honors Course Designator
Prerequisite: (ENGR 211 with C or better or ENGR 211H with C or better) and (PH 211 [C] or PH 211H [C])
Equivalent to: ENGR 212

ENGR 213, STRENGTH OF MATERIALS, 3 Credits
Properties of structural materials; analysis of stress and deformation in axially loaded members, circular shafts, and beams, and in statically indeterminate systems containing these components. Lec/rec.
Prerequisite: (ENGR 211 with C or better or ENGR 211H with C or better)
Equivalent to: ENGR 213H
Available via Ecampus

ENGR 213H, STRENGTH OF MATERIALS, 3 Credits
Properties of structural materials; analysis of stress and deformation in axially loaded members, circular shafts, and beams, and in statically indeterminate systems containing these components. Lec/rec.
Attributes: HNRS – Honors Course Designator
Prerequisite: ENGR 211 with C or better or ENGR 211H with C or better
Equivalent to: ENGR 213

ENGR 221, THE SCIENCE, ENGINEERING AND SOCIAL IMPACT OF NANOTECHNOLOGY, 3 Credits
Nanotechnology is an emerging engineering field that manipulates atoms and molecules to fabricate new materials and tiny devices. Properties of nanostructured materials, manufacturing methods, characterization methods, and impact on health and safety. Benefits and concerns about nanotechnology will be assessed. Lec/rec. CROSSLISTED as ENG 221/
MATS 221.
Equivalent to: MATS 221
Recommended: One year of college science.

ENGR 248, ENGINEERING GRAPHICS AND 3-D MODELING, 3 Credits
Introduction to graphical communication theory, including freehand sketching techniques, geometric construction, multi-view, pictorial, sectional and auxiliary view representation and dimensioning techniques. Practical application of theoretical concepts using solid modeling software to capture design intent and generate engineering drawings. Lec/Lab.
Available via Ecampus

ENGR 299, SPECIAL TOPICS, 0-16 Credits
This course is repeatable for 16 credits.

ENGR 299H, SPECIAL TOPICS, 0-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: ENGR 299
This course is repeatable for 16 credits.

ENGR 350, *SUSTAINABLE ENGINEERING, 3 Credits
Examination of technological innovations and alternatives required to maintain human quality of life and environmental sustainability. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society
Equivalent to: ENGR 350H
Available via Ecampus

ENGR 350H, *SUSTAINABLE ENGINEERING, 3 Credits
Examination of technological innovations and alternatives required to maintain human quality of life and environmental sustainability. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society; HNRS – Honors Course Designator
Equivalent to: ENGR 350

ENGR 352, *CREATIVE COLLABORATION: DESIGNING AND BUILDING, 3 Credits
Working in multi-disciplinary teams, design, implement, and document a piece of public art work or science museum display. Projects may be made of any media, but must demonstrate creativity both in the engineering used to create them and the technology and society message they convey. CROSSLISTED as ART 352/ENGR 352. (Bacc Core Course)
Attributes: CPLA – Core, Pers, Lit and Arts
Equivalent to: ART 352

ENGR 363, *ENERGY MATTERS, 3 Credits
Establishes a basic energy vocabulary, applies the fundamental concepts of identifying energy use and determining efficiency, and studies the implications of energy decisions in the context of traditional, alternative, and sustainable energy resources. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society
Equivalent to: ENGR 363H
Recommended: MTH 112 or higher
ENGR 363H, ENERGY MATTERS, 3 Credits
Establishes a basic energy vocabulary, applies the fundamental concepts of identifying energy and determining efficiency, and studies the implications of energy decisions in the context of traditional, alternative, and sustainable energy resources. (Bacc Core Course)
Attributes: CSST – Core, Synthesis, Science/Technology/Society; HNRS – Honors Course Designator
Equivalent to: ENGR 363
Recommended: MTH 112 or higher

ENGR 390, ENGINEERING ECONOMY, 3 Credits
Time value of money; economic study techniques, depreciation, taxes, retirement, and replacement of engineering facilities.
Available via Ecampus

ENGR 391, ENGINEERING ECONOMICS AND PROJECT MANAGEMENT, 3 Credits
Critical issues in the management of engineering and high-technology projects are discussed. Economic, time, and performance parameters of engineering projects are analyzed from the organizational and resource perspectives. Network optimization and simulation concepts are introduced. Fundamental engineering economics concepts are introduced and applied to planning and managing projects.
Equivalent to: ENGR 391H
Available via Ecampus

ENGR 391H, ENGINEERING ECONOMICS AND PROJECT MANAGEMENT, 3 Credits
Critical issues in the management of engineering and high-technology projects are discussed. Economic, time, and performance parameters of engineering projects are analyzed from the organizational and resource perspectives. Network optimization and simulation concepts are introduced. Fundamental engineering economics concepts are introduced and applied to planning and managing projects.
Attributes: HNRS – Honors Course Designator
Equivalent to: ENGR 391

ENGR 399, SPECIAL TOPICS, 1-16 Credits
Equivalent to: ENGR 399H
This course is repeatable for 16 credits.
Available via Ecampus

ENGR 399H, SPECIAL TOPICS, 1-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: ENGR 399
This course is repeatable for 16 credits.

ENGR 407, SEMINAR, 1-16 Credits
Graded P/N.
Equivalent to: ENGR 407H
This course is repeatable for 16 credits.

ENGR 450, PROFESSIONAL PREPARATION FOR BEGINNING LEVEL ENGINEERS, 1 Credit
Practical training on professional skills essential for a career as a practicing engineer. Covers development of networking and interviewing skills, preparation of a resume, job search strategies and guidance on future professional development.

ENGR 499, SPECIAL TOPICS, 1-16 Credits
Equivalent to: ENGR 499H
This course is repeatable for 16 credits.

ENGR 520, MENG INTRODUCTION TO PORTFOLIO, 1 Credit
Explores OSU resources, Graduate School, and College of Engineering requirements to prepare for work on an MEng final portfolio. Engages in writing skills necessary to complete the final portfolio. Investigates communication styles, Imposter Syndrome, understanding and coping mechanisms, and professional ethics as they relate to an MEng final portfolio.

ENGR 521, MENG PORTFOLIO COMPLETION, 1 Credit
Demonstrate how graduate learning outcomes have been met. Formulate clear and reasonable professional goals and articulate how the program has helped prepare for achievement of those goals. Create a final portfolio document summarizing core knowledge and its integration with other fields.
Prerequisite: ENGR 520 with C or better
ENGR 531, APPLIED IMAGING AND IMAGE PROCESSING, 3 Credits
Explore image formats, storage issues, characteristics and significance of histograms; define and explain image artifacts such as random and periodic noise. Implement different image processing operations such as filters, registration, and mathematical algorithms to enhance an image and facilitate subsequent segmentation such as histogram thresholding, cluster analysis, watershed analysis, etc. Make quantitative measurements from images, such as length, area, orientation, connectivity, anisotropy, and perimeter of objects, as well as porosities, surface areas and curvatures. Apply advanced image analysis via skeletonization, morphological/ topological analysis, surface generation/ triangulation etc. 
This course is repeatable for 3 credits.
Recommended: Introductory preparation in mathematical analysis, vectors, matrices, probability, statistics, linear systems, and computer programming

ENGR 550, PROFESSIONAL PREPARATION FOR ENGINEERS, 1 Credit
Practical training on professional skills essential for a career as a practicing engineer. Covers development of networking and interviewing skills, preparation of a resume and related online media, and guidance on future professional development. As this is a graduate-level course, it will include guidance on how students can develop and present themselves in ways that differentiate their abilities from those of more junior engineers. Available via Ecampus

ENGR 555, FOUNDATIONS OF ENGINEERING EDUCATION RESEARCH AND PRACTICE, 3 Credits
An examination as to why engineering education is practiced and researched the way that it is through reading, discussion and writing. The focus of the course will be on written and verbal interactions informed by careful reading of assigned texts.

ENGR 599, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

Outdoor Products (OP)
OP 101, INTRODUCTION TO THE OUTDOOR PRODUCTS INDUSTRY, 4 Credits

OP 231, EXPERIENCE OUTDOOR PRODUCTS - WATER, 2 Credits
Hands-on experience with multiple water-related outdoor products in classroom and outdoor settings. Identifying key characteristics for consumers and implications for design, development, marketing, business, and sustainability. Evaluating product performance and developing ideas for objective improvements. Includes one mandatory weekend outdoor-experience outing.

OP 232, EXPERIENCE OUTDOOR PRODUCTS - WINTER, 2 Credits
Hands-on experience with multiple winter-related outdoor products in classroom and outdoor settings. Identifying key characteristics for consumers and implications for design, development, marketing, business, and sustainability. Evaluating product performance and developing ideas for objective improvements. Includes one mandatory weekend outdoor-experience outing.

OP 233, EXPERIENCE OUTDOOR PRODUCTS - LAND, 2 Credits
Hands-on experience with multiple land-related outdoor products in classroom and outdoor settings. Identifying key characteristics for consumers and implications for design, development, marketing, business, and sustainability. Evaluating product performance and developing ideas for objective improvements. Includes one mandatory weekend outdoor-experience outing.

OP 301, OUTDOOR PRODUCTS PROCESS CONNECTIONS, 4 Credits
The interrelated processes and connections of product commercialization. How product design decisions impacts business considerations such as margin, inventory, supply chain, cash flow, and profitability. How design thinking and nurturing a design culture that promotes innovation is necessary for business success and growth. Challenges of product sales and distribution related to design. 
Prerequisite: OP 231 with C- or better or OP 232 with C- or better or OP 233 with C- or better

OP 307, OUTDOOR PRODUCTS PRE-PRACTICUM SEMINAR, 1 Credit
Prerequisite: OP 101 with C- or better

OP 309, OUTDOOR PRODUCTS PRACTICUM, 1-6 Credits
Prerequisite: OP 307 with C- or better
This course is repeatable for 6 credits.

OP 351, OUTDOOR PRODUCTS PROCESS AND DEVELOPMENT I, 4 Credits
Explores needs-based design for Outdoor Products. Experiential-based projects related to function and design and understanding Design in context of Consumer Needs. Investigates design-choices impact upstream and downstream commercialization processes. 
Prerequisite: OP 301 with C- or better

OP 352, OUTDOOR PRODUCTS DESIGN AND DEVELOPMENT II, 4 Credits
Exploration of development and product creation cycles for Outdoor Products. Bridging the design and operations phases of commercialization. Investigate quality, sample production, product testing, and costing. Managing how development decisions impact upstream and downstream commercialization processes. 
Prerequisite: OP 351 with C- or better
OP 360, OUTDOOR PRODUCTS BRANDING, MERCHANDISING AND SALES, 4 Credits
Consumer behavior, emerging markets, building and nurturing brands, strategic communication. Content curation, merchandising and communication. Traditional and non-traditional sales channels.
Prerequisite: OP 352 with C- or better

OP 410, OUTDOOR PRODUCTS INTERNSHIP, 1-8 Credits
Prerequisite: OP 307 with C- or better
This course is repeatable for 8 credits.

Science of Engineering (ESC)
ESC 111, INTRODUCTION TO ENGINEERING, 3 Credits
Describes different fields of engineering; Performs calculations and synthesize results; Develops critical thinking skills and apply to engineering problems; Applies engineering specific technical and soft skills.
Equivalent to: MIME 101

ESC 340, INTRO TO EXPERIMENTATION, 4 Credits
Theory and application of instrumentation and measurement techniques are covered. Course topics include fundamentals of sampling theory, error and uncertainty analysis, signal conditioning, sensor fundamentals, and data analysis. Laboratory exercises provide experience utilizing data acquisition hardware and software, as well as a variety of sensors for measuring parameters from mechanical and electrical engineering systems.
Prerequisite: CS 162 with C or better and ENGR 202 [C] and PH 213 [C] and ST 314 [C]

ESC 350, ENGINEERING MATERIALS, 4 Credits
An introduction to materials and their structures and properties. The physical and chemical phenomena responsible for the electrical, mechanical, and thermal behavior of solids will be studied.
Prerequisite: PH 213 with C or better and CH 232 [C]

ESC 401, RESEARCH, 1-16 Credits
Equivalent to: ESE 401
This course is repeatable for 4 credits.

ESC 498, *MIME CAPSTONE DESIGN, 4 Credits
Product design; selection and replacement of major tools, processes, and equipment; paperwork controls; subsystem revision; system or plant revision; selection and training of personnel; long-run policies and strategy. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisite: ESE 497 with C or better or IE 497 with C or better or ME 497 with C or better or MIME 497 with C or better
Equivalent to: ESE 498, IE 498, ME 498

ESC 499, SPECIAL TOPICS, 4 Credits
This course is repeatable for 16 credits.