BIOLOGICAL AND ECOLOGICAL ENGINEERING

The Department of Biological and Ecological Engineering at OSU is involved in teaching, research and extended education relevant to the application of engineering analysis to biological, ecological and hydrological systems. The department has strength in graduate training and research and offers both an MS and PhD degree in Biological and Ecological Engineering. The graduate degree program is focused on the professional development of engineers and the analysis of environmental systems, hydrology and water resources. Activities within the department include water resource analysis, fate and transport of biologically relevant chemicals, bioreactor design and analysis, watershed analysis and resource management, simulation modeling of ecological and biological systems, regional and global hydrology, geographical information systems for environmental modeling, and the development of bio-based products and fuels.

Undergraduate Programs

Major

- Ecological Engineering (http://catalog.oregonstate.edu/college-departments/engineering/biological-ecological-engineering/ecological-engineering-bs-hbs/)

Minor

- Irrigation Engineering (http://catalog.oregonstate.edu/college-departments/engineering/biological-ecological-engineering/irrigation-engineering-minor/)

Graduate Programs

Major

- Biological and Ecological Engineering (http://catalog.oregonstate.edu/college-departments/engineering/biological-ecological-engineering/biological-ecological-engineering-meng-ms-phd/)

Minor

- Biological and Ecological Engineering (http://catalog.oregonstate.edu/college-departments/engineering/biological-ecological-engineering/biological-ecological-engineering-graduate-minor/)

John P. Bolte, Director
116 Gilmore Hall
Oregon State University
Corvallis, OR 97331-3906
Phone: 541-737-2041
Email: info-bee@engr.orst.edu
Website: bee.oregonstate.edu (https://bee.oregonstate.edu)

Faculty

Professors Bolte, Godwin, Liu, Murthy, Selker, Tullos
Associate Professors Bachelet, Chaplen¹, Ely¹, Higgins
Assistant Professors Good, Jones, Udell, Vache

¹ Licensed Professional Engineer.

BEE 101, ECOLOGICAL ENGINEERING I, 3 Credits
Introduction to engineering at OSU and the field of ecological engineering. Topics include engineering analysis and problem solving, professional ethics, the design process and teamwork.
Recommended: MTH 112

BEE 102, ECOLOGICAL ENGINEERING II, 3 Credits
Introduction to common problems and solutions in ecological engineering, emphasizing the multiplicity of approaches to constraining, analyzing, and resolving challenges of ecosystem management. Two overnight field trips to local ecological monitoring and engineering sites will be required.

BEE 199, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

BEE 221, FUNDAMENTALS OF ECOLOGICAL ENGINEERING, 3 Credits
Introduction to the concepts and practice of ecological engineering. Covers chemical behavior and cycling in the environment, chemical kinetics, and unit processes of conventional treatment systems. Topics are applied to develop ecological treatment alternatives that meet the needs of human societies.

BEE 222, ECOLOGICAL ENGINEERING COMPUTATION, 2 Credits
Develops programming skills in Python, including basic programming tasks, data analysis, data visualization, and optimization, with applications in Ecological Engineering. Builds computational thinking skills.

BEE 270, ECOLOGY FOR ENGINEERS, 3 Credits
The study of ecology in the context of engineering. Develops an understanding of the patterns associated with species distribution in the natural world. Examines the theories of competition, predation, disease and mutualism that help explain the functioning of biological communities. Discusses interactions between abiotic and organismal factors, the environment, and ecological properties and processes.

BEE 299, SPECIAL TOPICS, 1-16 Credits
This course is repeatable for 16 credits.

BEE 311, ECOLOGICAL FLUID MECHANICS, 4 Credits
Fluid properties, fluid statics, fluid motion, conservation of mass, momentum and energy for incompressible fluids, dimensional analysis, ecological engineering applications. Lec/rec
Prerequisite: (PH 212 with C or better or PH 212H with C or better) and (MTH 254 [C] or MTH 254H [C]) and (ENGR 211 [C] or ENGR 211H [C])

BEE 312, ECOHYDRAULICS, 4 Credits
Theory and design of hydraulic systems for ecological engineering applications. Lec/rec.
Prerequisite: BEE 311 with C or better or CE 311 with C or better or CHE 331 with C or better or CHE 331H with C or better
BEE 313, ECOHYDROLOGY, 4 Credits
Provides a quantitative description of fundamental ecohydrologic processes, the interactions of between water and the atmosphere, soils, and plants, as well as techniques for estimating the movement of water in the through ecosystems.
Prerequisite: BEE 312 with C or better and BEE 320 [C]

BEE 320, BIOSYSTEMS ANALYSIS AND MODELING, 4 Credits
An introduction to simulation modeling and analysis of a variety of biological and ecological systems. Systems approaches to describing ecological systems.
Prerequisite: BEE 222 with C or better and (MTH 256 [C] or MTH 256H [C])
Recommended: MTH 256

BEE 322, ECOLOGICAL ENGINEERING THERMODYNAMICS AND TRANSFER PROCESS, 4 Credits
A study of the transport processes of fluid flow, heat transfer and mass transfer applied to biological organisms and ecological systems.
Prerequisite: BEE 320 with C or better

BEE 361, ECOLOGICAL ENGINEERING LABORATORY, 3 Credits
Introduction to modern measurement methods for ecological and environmental applications includes sensors and systems for measuring soil, water and atmospheric properties. No final exam; field trip required. Lec/lab.
Prerequisite: BEE 312 with C or better

BEE 399, SPECIAL TOPICS, 0-16 Credits
This course is repeatable for 16 credits.

BEE 401, RESEARCH, 1-16 Credits
This course is repeatable for 16 credits.

BEE 405, READING AND CONFERENCE, 1-16 Credits
Equivalent to: BRE 405
This course is repeatable for 16 credits.

BEE 407, SEMINAR, 1-16 Credits
Departmental seminars. Graded P/N.
Equivalent to: BEE 407H, BRE 407
This course is repeatable for 16 credits.

BEE 407H, SEMINAR, 1-16 Credits
Departmental seminars. Graded P/N.
Attributes: HNRS – Honors Course Designator
Equivalent to: BEE 407
This course is repeatable for 16 credits.

BEE 410, ECOLOGICAL ENGINEERING INTERNSHIP, 1-12 Credits
Internship in ecological engineering to provide students with an opportunity to apply course work and theory to the real world. Requires internship opportunity identification by student.
This course is repeatable for 12 credits.

BEE 411, GLOBAL ENVIRONMENTAL CHANGE: USING DATA TO INFORM DECISIONS, 3 Credits
Empowers students interested in global change research to focus on the interactions between changes in human land use and climate. Using an innovative online data and mapping tool called Data Basin, students will explore topics accessing the highest quality datasets available in an all-in-one platform.
Prerequisite: FE 257 with C or better
Available via Ecampus

BEE 415, PROFESSIONAL DEVELOPMENT, 1 Credit
Preparation for student professional careers. Students will interact with and hear seminars from professionals working in the ecological engineering field to learn from their experiences.
Corequisites: BEE 469

BEE 433, IRRIGATION SYSTEM DESIGN, 4 Credits
Principles of soil physics and plant water use applied to irrigation system design. Design of gravity, pressurized, and trickle irrigation systems, improving on-farm water management, performance characteristics of pumps and other irrigation equipment. Lec/lab. Offered alternate years.
Prerequisite: BEE 312 with C or better or CE 313 with C or better
Equivalent to: BRE 433

BEE 438, ECOLOGICAL SYSTEMS ANALYSIS, 4 Credits
An introduction to sustainability with a focus on case studies that are relevant to biological and ecological engineers. An introduction to tools that perform technical feasibility analysis, economic viability analysis, environmental risk assessment, resource sustainability assessment and life cycle assessment (LCA). Course will consist of theory and case studies highlighting the use of LCA methods to assess sustainability.
Prerequisite: ENGR 391 with C or better or ENGR 391H with C or better

BEE 439, IRRIGATION PRINCIPLES AND PRACTICES, 4 Credits
Survey of irrigation systems, system configurations, factors that influence irrigation efficiency, crop water requirements, energy requirements, pumps, irrigation scheduling. For non-engineers. Lec/lab/rec.
Prerequisite: MTH 111 with C or better
Equivalent to: BRE 439

BEE 446, RIVER ENGINEERING, 4 Credits
Multipurpose river use; natural physical processes in alluvial rivers; channel modification practices; river structures; design practices; impact of river modification; problem analysis; and impact minimization. Offered alternate years.
Prerequisite: BEE 312 with C or better or CE 313 with C or better
Recommended: CE 313
BEE 458, NONPOINT SOURCE POLLUTION ASSESSMENT AND CONTROL, 3 Credits
Problem solving in nonpoint source pollution. Methods for evaluating the extent, rate, timing, and fate of Non-Point Source (NPS) pollutants in agricultural and urban environments.
Prerequisite: BEE 313 with C or better or CE 412 with C or better
Available via Ecampus

BEE 468, BIOREMEDIATION ENGINEERING, 4 Credits
Examines strategies for using a variety of biological processes for treating municipal, agricultural and industrial contaminants. Lec/lab.
Prerequisite: BEE 221 with C or better or ENVE 322 with C or better
Available via Ecampus

BEE 469, ECOLOGICAL ENGINEERING DESIGN I, 4 Credits
Engineering design processes for ecological engineering applications, including specifications, performance criteria, timelines, and project logistics, principles and practices of working in engineering teams. (Writing Intensive Course)
Attributes: CWIC – Core, Skills, WIC
Prerequisite: BEE 322 with C or better
Recommended: ENGR 391 or ENGR 391H

BEE 470, ECOLOGICAL ENGINEERING DESIGN II, 4 Credits
Engineering design processes for ecological engineering applications, including specifications, performance criteria, timelines, and project logistics, principles and practices of working in engineering teams.
Prerequisite: BEE 469 with C or better

BEE 472, INTRODUCTION TO FOOD ENGINEERING PRINCIPLES, 5 Credits
Fundamental engineering principles for scientists and non-process engineers. Topics include fluid flow, mass and energy transfer, and material and energy balances. Directed at food scientists and other majors who need or would like a working knowledge of food engineering principles.
Prerequisite: MTH 112 with C- or better and (MTH 227 [C-] or MTH 251 [C-] or MTH 251H [C-]) and PH 201 [C-]
Equivalent to: BEE 452

BEE 473, INTRODUCTION TO FOOD ENGINEERING PROCESS DESIGN, 3 Credits
Fundamental engineering process design principles for food scientists and non-process engineers. Directed at those who need or would like a working knowledge of applied food engineering process design. Lec/rec.
Equivalent to: BEE 453
Recommended: BEE 472 or BEE 572

BEE 482, ECOLOGICAL ENGINEERING DESIGN II, 3 Credits
Designs engineering processes for ecological engineering applications, including specifications, performance criteria, timelines, and project logistics, principles and practices of working in engineering teams.
Prerequisite: BEE 481 with C or better

BEE 483, ECOLOGICAL ENGINEERING DESIGN III, 2 Credits
Designs engineering processes for ecological engineering applications, including specifications, performance criteria, timelines, and project logistics, principles and practices of working in engineering teams.
Prerequisite: BEE 482 with C or better

BEE 499, SPECIAL TOPICS, 0-16 Credits
Equivalent to: BEE 499H, BRE 499
This course is repeatable for 16 credits.

BEE 499H, SPECIAL TOPICS, 1-16 Credits
Attributes: HNRS – Honors Course Designator
Equivalent to: BEE 499
This course is repeatable for 16 credits.

BEE 501, RESEARCH, 1-16 Credits
Equivalent to: BRE 501
This course is repeatable for 16 credits.

BEE 503, THESIS, 1-16 Credits
Equivalent to: BRE 503
This course is repeatable for 99 credits.

BEE 505, READING AND CONFERENCE, 1-16 Credits
Equivalent to: BRE 505
This course is repeatable for 16 credits.

BEE 506, PROJECTS, 1-16 Credits
Equivalent to: BRE 506
This course is repeatable for 16 credits.

BEE 507, SEMINAR, 1 Credit
Section 1: Graduate Student Orientation Seminar to acquaint new graduate students with graduate school and departmental requirements, policies and expectations, and departmental research programs.
Section 2: Graduate Research Publication Seminar to expose students to requirements for successful proposals and publication of research results. Section 3: Oral Presentation Improvement--A highly participatory educational effort designed to improve performance in presenting research reports, technical papers and in responding to oral examination questions. Graded P/N.
Equivalent to: BRE 507
This course is repeatable for 99 credits.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEE 511</td>
<td>GLOBAL ENVIRONMENTAL CHANGE: USING DATA TO INFORM DECISIONS</td>
<td>3</td>
<td>Empowers students interested in global change research to focus on the interactions between changes in human land use and climate. Using an innovative online data and mapping tool called Data Basin, students will explore topics accessing the highest quality datasets available in an all-in-one platform. Available via Ecampus</td>
</tr>
<tr>
<td>BEE 512</td>
<td>PHYSICAL HYDROLOGY</td>
<td>3</td>
<td>Principles of hydrologic processes and the integration of these processes into the hydrologic cycle. Topics include atmospheric processes, precipitation and runoff, storm response in streamflow on a watershed scale, and major concepts in groundwater systems. Equivalent to: BRE 512 Recommended: One year of calculus. Available via Ecampus</td>
</tr>
<tr>
<td>BEE 522</td>
<td>DATA ANALYSIS AND VISUALIZATION USING PYTHON</td>
<td>3</td>
<td>Foundation course in computational thinking and computational skills relevant to data analysis and visualization of environmental data.</td>
</tr>
<tr>
<td>BEE 525</td>
<td>STOCHASTIC HYDROLOGY</td>
<td>3</td>
<td>Introduction to fundamental concepts that are needed for stochastic modeling of hydrologic processes in presence of nonstationarity and uncertainty. CROSSLISTED as BEE 525/CE 525. Prerequisite: CE 512 with C or better or BEE 512 with C or better Equivalent to: CE 525</td>
</tr>
<tr>
<td>BEE 529</td>
<td>BIOSYS MODELING TECHNIQUES</td>
<td>3</td>
<td>Development of mathematical models of biological and ecological systems; linear and nonlinear systems analysis; stochastic modeling and random processes; model solution and analysis techniques.</td>
</tr>
<tr>
<td>BEE 533</td>
<td>IRRIGATION SYSTEM DESIGN</td>
<td>4</td>
<td>Principles of soil and plant water use applied to irrigation system design. Design of gravity, pressurized, and trickle irrigation systems, improving on-farm water management, performance characteristics of pumps and other irrigation equipment. Lec/lab. Offered alternate years. Equivalent to: BRE 533 Recommended: ENGR 332</td>
</tr>
<tr>
<td>BEE 538</td>
<td>ECOLOGICAL SYSTEMS ANALYSIS</td>
<td>4</td>
<td>An introduction to sustainability with a focus on case studies that are relevant to biological and ecological engineers. An introduction to tools that perform technical feasibility analysis, economic viability analysis, environmental risk assessment, resource sustainability assessment and life cycle assessment (LCA). Course will consist of theory and case studies highlighting the use of LCA methods to assess sustainability. Recommended: ENGR 391 or ENGR391H</td>
</tr>
<tr>
<td>BEE 540</td>
<td>ENVIRONMENTAL TRANSPORT PROCESSES</td>
<td>3</td>
<td>Mixing and transport processes in the environment.</td>
</tr>
<tr>
<td>BEE 542</td>
<td>VADOSE ZONE TRANSPORT</td>
<td>4</td>
<td>Introduction to the physical and hydraulic properties involved in flow from the soil surface to groundwater. Classical infiltration equations will be derived and presented with exact and approximate solutions. Attention is focused on application to pollutant transport and recent advances in nonideal flow. Equivalent to: BRE 542 Recommended: MTH 254</td>
</tr>
<tr>
<td>BEE 544</td>
<td>OPEN CHANNEL HYdraulics</td>
<td>4</td>
<td>Steady, uniform, and nonuniform flow in natural and artificial open channels; unsteady flow; interaction of flow with river structures; and computational methods. Offered alternate years. Equivalent to: BRE 544, CE 544 Recommended: CE 313</td>
</tr>
<tr>
<td>BEE 545</td>
<td>SEDIMENT TRANSPORT</td>
<td>4</td>
<td>Principles of sediment erosion, transportation and deposition in rivers, reservoirs, and estuaries; measurement, analysis, and computational techniques. Offered even years in winter term. CROSSLISTED as BEE 545/CE 545. Equivalent to: BRE 545, FE 545 Recommended: CE 313 or FE 330</td>
</tr>
<tr>
<td>BEE 546</td>
<td>RIVER ENGINEERING</td>
<td>4</td>
<td>Multipurpose river use; natural physical processes in alluvial rivers; channel modification practices; river structures; design practices; impact of river modification; problem analysis; and impact minimization. Offered alternate years. Equivalent to: CE 546 Recommended: CE 313</td>
</tr>
<tr>
<td>BEE 549</td>
<td>REGIONAL HYDROLOGIC MODELING</td>
<td>3</td>
<td>Challenges in regional-scale water resource analysis and management with emphasis on application to production agriculture. Application of geostatistical techniques to spatially variable systems and remote sensing to large-scale water resource systems. Development of soilwater-atmosphere-plant models. Analysis of evapotranspiration estimating methods. Offered alternate years. Equivalent to: BRE 549 Recommended: BEE 512 and MTH 256</td>
</tr>
<tr>
<td>BEE 558</td>
<td>NONPOINT SOURCE POLLUTION ASSESSMENT AND CONTROL</td>
<td>3</td>
<td>Problem solving in nonpoint source pollution. Methods for evaluating the extent, rate, timing, and fate of Non-Point Source (NPS) pollutants in agricultural and urban environments. Available via Ecampus</td>
</tr>
</tbody>
</table>
BEE 568, BIOREMEDlATION ENGINEERING, 4 Credits
Examines strategies for using a variety of biological processes for treating municipal, agricultural and industrial contaminants. Lec/lab. Available via Ecampus

BEE 572, INTRODUCTION TO FOOD ENGINEERING PRINCIPLES, 5 Credits
Fundamental engineering principles for scientists and non-process engineers. Topics include fluid flow, mass and energy transfer, and material and energy balances. Directed at food scientists and other majors who need or would like a working knowledge of process engineering principles.
Recommended: MTH 112 and (MTH 227 or MTH 251 or MTH 251H) and PH 201

BEE 573, INTRODUCTION TO FOOD ENGINEERING PROCESS DESIGN, 3 Credits
Fundamental engineering process design principles for food scientists and non-process engineers. Directed at those who need or would like a working knowledge of applied food engineering process design. Lec/rec.
Equivalent to: BEE 553
Recommended: BEE 472 or BEE 572

BEE 585, METABOLIC SYSTEMS ENGINEERING, 3 Credits
Quantitative and experimental approaches for describing and engineering biological networks and an introduction to the principles and methodologies of metabolic engineering and synthetic biology.
Equivalent to: BIOE 585
Recommended: Statistics, biology, biochemistry or microbiology.

BEE 586, PROBLEM SOLVING FOR METABOLIC SYSTEMS ENGINEERING, 1 Credit
Corequisites: BEE 585
Recommended: MTH 251 and MTH 252

BEE 599, SPECIAL TOPICS, 0-16 Credits
Equivalent to: BRE 599
This course is repeatable for 16 credits.

BEE 601, RESEARCH, 1-16 Credits
Equivalent to: BEE 601
This course is repeatable for 16 credits.

BEE 603, THESIS, 1-16 Credits
Equivalent to: BEE 603
This course is repeatable for 999 credits.